Cargando…

Non-linear waves in dispersive media /

Non-Linear Waves in Dispersive Media introduces the theory behind such topic as the gravitational waves on water surfaces. Some limiting cases of the theory, wherein proof of an asymptotic class is necessary and generated, are also provided. The first section of the book discusses the notion of line...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Karpman, Vladimir Iosifovich
Formato: Electrónico eBook
Idioma:Inglés
Indeterminado
Publicado: Oxford ; New York : Pergamon Press, [1974, �1975]
Edición:[1st ed.].
Colección:International series of monographs in natural philosophy ; v. 71.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn643580922
003 OCoLC
005 20231117033144.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 100625t19741975enka ob 001 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d UIU  |d OCLCF  |d N$T  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCQ  |d MERUC  |d IDB  |d OCLCQ  |d INARC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCL  |d OCLCO 
066 |c (S 
019 |a 300638731  |a 895430488  |a 1036828400  |a 1154467440 
020 |a 9781483187150  |q (electronic bk.) 
020 |a 1483187152  |q (electronic bk.) 
020 |z 0080177204 
020 |z 9780080177205 
035 |a (OCoLC)643580922  |z (OCoLC)300638731  |z (OCoLC)895430488  |z (OCoLC)1036828400  |z (OCoLC)1154467440 
041 1 |a eng  |h und 
042 |a dlr 
050 4 |a QA927  |b .K2713 1974 
072 7 |a SCI  |x 041000  |2 bisacsh 
072 7 |a SCI  |x 096000  |2 bisacsh 
082 0 4 |a 531/.1133 
100 1 |a Karpman, Vladimir Iosifovich. 
245 1 0 |a Non-linear waves in dispersive media /  |c by V.I. Karpman ; translated by F.F. Cap. ; translation edited by S.M. Hamberger. 
250 |a [1st ed.]. 
260 |a Oxford ;  |a New York :  |b Pergamon Press,  |c [1974, �1975] 
300 |a 1 online resource (xi, 186 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a International series of monographs in natural philosophy ;  |v v. 71 
504 |a Includes bibliographical references. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |6 880-01  |a Front Cover; Non-Linear Waves in Dispersive Media; Copyright Page; Table of Contents; PREFACE; INTRODUCTION; Chapter 1. LINEAR APPROXIMATION; 2 General Solution of the Linearized Equations; 3 Linearized Korteweg-de Vries Equation; Chapter 2. EXAMPLES OF DISPERSIVE MEDIA; 4 Gravitational Waves on Fluid Surfaces; 5 The Boussinesq Equation; 6 Ion-sound Waves in Unmagnetized Plasma; 7 Non-linear Waves in Magnetized Plasma; 8 Non-linear Electromagnetic Waves in Isotropie Dielectrics; 9 Sound Waves with Dispersion; Chapter 3. NON-LINEAR STATIONARY WAVES. 
505 8 |a 10 Steady Solutions of the Boussinesq Equations 11 Stationary Waves Propagating Transversely to the Magnetic Field in Rarefied Plasma (34-37, 3); 12 Other Examples of Stationary Waves; Chapter 4. NON-LINEAR WAVES IN WEAKLY DISPERSIVE MEDIA; 13 The Burgers Equation; 14 Solution of the Burgers Equation; 15 The Korteweg-de Vries Equation; 16 Conservation Laws for the Korteweg-de Vries Equation; 17 General Pattern of the Evolution of Initial Perturbations in Weakly Dispersive Media; 18 Analytical Solution of the Korteweg-de Vries Equation. 
505 8 |a 29 Self-focusing and Self-channelling of Waves 30 Electro-acoustic Waves in Plasma; APPENDIX A: NON-LINEAR WAVES WITH SLOWLY VARYING PARAMETERS (ADIABATIC APPROXIMATION OF WHITHAM); A 1 Variation Principle; A 2 Adiabatic Invariants; A 3 Non-linear Geometrical Optics; APPENDIX B: EVOLUTION OF ELECTRO-ACOUSTIC WAVES IN PLASMA WITH NEGATIVE DIELECTRIC PERMITTIVITY; B 1 Boundary Conditions; B 2 Excitation and Evolution of Electro-acoustic Waves; B 3 Solution of the Boundary-value Problem; B 4 General Solution of the Fundamental Equations; REFERENCES; INDEX. 
520 |a Non-Linear Waves in Dispersive Media introduces the theory behind such topic as the gravitational waves on water surfaces. Some limiting cases of the theory, wherein proof of an asymptotic class is necessary and generated, are also provided. The first section of the book discusses the notion of linear approximation. This discussion is followed by some samples of dispersive media. Examples of stationary waves are also examined. The book proceeds with a discussion of waves of envelopes. The concept behind this subject is from the application of the methods of geometrical optics to non-linear the. 
650 0 |a Nonlinear waves. 
650 0 |a Wave-motion, Theory of. 
650 0 |a Nonlinear theories. 
650 6 |a Th�eorie du mouvement ondulatoire.  |0 (CaQQLa)201-0015063 
650 6 |a Th�eories non lin�eaires.  |0 (CaQQLa)201-0031988 
650 6 |a Ondes non lin�eaires.  |0 (CaQQLa)201-0145368 
650 7 |a SCIENCE  |x Mechanics  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Mechanics  |x Solids.  |2 bisacsh 
650 7 |a Wave-motion, Theory of  |2 fast  |0 (OCoLC)fst01172888 
650 7 |a Nonlinear theories  |2 fast  |0 (OCoLC)fst01038812 
650 7 |a Nonlinear waves  |2 fast  |0 (OCoLC)fst01038821 
650 7 |a Mecanica, Elasticidade E Reologia.  |2 larpcal 
650 7 |a Campos E Ondas (Fisica Teorica)  |2 larpcal 
776 0 8 |i Print version:  |a Karpman, Vladimir Iosifovich.  |t Non-linear waves in dispersive media.  |b [1st ed.].  |d Oxford, New York, Pergamon Press, [1974, �1975]  |w (DLC) 74004468  |w (OCoLC)841757 
830 0 |a International series of monographs in natural philosophy ;  |v v. 71. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080177205  |z Texto completo 
880 8 |6 505-01/(S  |a 19 Asymptotic Expressions for the Amplitudes of Solitons and Tails for Large Values of σ 20 Self-similar Solutions of the Korteweg-de Vries Equation; 21 Quasi-linear Solutions of the Korteweg-de Vries Equation; 22 Flow Around a Thin Body in a Dispersive Medium; 23 Shock Waves in Dispersive Media; Chapter 5. WAVES OF ENVELOPES; 24 Non-linear Geometrical Optics; 25 Instability Criteria for Stationary Waves; 26 Evolution of the Wave Envelopes in the Hydrodynamic Approximation -- 27 Non-linear Parabolic Equation; 28 Self-modulation of Waves (Modulational Instability).