|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_ocn624331845 |
003 |
OCoLC |
005 |
20231117033135.0 |
006 |
m o d |
007 |
cr bn||||||abp |
007 |
cr bn||||||ada |
008 |
100519s1993 caua ob 001 0 eng d |
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCQ
|d OCLCF
|d OPELS
|d N$T
|d E7B
|d YDXCP
|d EBLCP
|d DEBSZ
|d OCLCQ
|d MERUC
|d OCLCQ
|d YDX
|d OCLCQ
|d LUN
|d OCLCQ
|d OCLCO
|d OCL
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 297303897
|a 897645850
|a 974615935
|a 974668841
|a 1014013685
|
020 |
|
|
|a 9780080500584
|q (electronic bk.)
|
020 |
|
|
|a 0080500587
|q (electronic bk.)
|
020 |
|
|
|z 1558602380
|
020 |
|
|
|z 9781558602380
|
035 |
|
|
|a (OCoLC)624331845
|z (OCoLC)297303897
|z (OCoLC)897645850
|z (OCoLC)974615935
|z (OCoLC)974668841
|z (OCoLC)1014013685
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a Q325.5
|b .Q56 1993
|
072 |
|
7 |
|a COM
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.3/1
|2 20
|
084 |
|
|
|a 54.72
|2 bcl
|
100 |
1 |
|
|a Quinlan, J. R.
|q (John Ross),
|d 1943-
|
245 |
1 |
0 |
|a C4.5 :
|b programs for machine learning /
|c J. Ross Quinlan.
|
260 |
|
|
|a San Mateo, Calif. :
|b Morgan Kaufmann Publishers,
|c �1993.
|
300 |
|
|
|a 1 online resource (x, 302 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a The Morgan Kaufmann series in machine learning
|
504 |
|
|
|a Includes bibliographical references (pages 291-296) and indexes.
|
520 |
|
|
|a This book is a complete guide to the C4.5 system as implemented in C for the UNIX environment. It contains a comprehensive guide to the system's use, the source code (about 8,800 lines), and implementation notes.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2010.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2010
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; C4.5: Programs for Machine Learning; Copyright Page; Table of Contents; Preface; Obtaining the C4.5 Code; CHAPTER 1. Introduction; 1.1 Example: Labor negotiation settlements; 1.2 Other kinds of classification models; 1.3 What lies ahead; CHAPTER 2. Constructing Decision Trees; 2.1 Divide and conquer; 2.2 Evaluating tests; 2.3 Possible tests considered; 2.4 Tests on continuous attributes; CHAPTER 3. Unknown Attribute Values; 3.1 Adapting the previous algorithms; 3.2 Play/Don't Play example again; 3.3 Recapitulation; CHAPTER 4. Pruning Decision Trees; 4.1 When to simplify?
|
505 |
8 |
|
|a 4.2 Error-based pruning4.3 Example: Democrats and Republicans; 4.4 Estimating error rates for trees; CHAPTER 5. From Trees to Rules; 5.1 Generalizing single rules; 5.2 Class rulesets; 5.3 Ranking classes and choosing a default; 5.4 Summary; CHAPTER 6. Windowing; 6.1 Example: Hypothyroid conditions revisited; 6.2 Why retain windowing?; 6.3 Example: The multiplexor; CHAPTER 7. Grouping Attribute Values; 7.1 Finding value groups by merging; 7.2 Example: Soybean diseases; 7.3 When to form groups?; 7.4 Example: The Monk's problems; 7.5 Uneasy reflections.
|
505 |
8 |
|
|a CHAPTER 8. Interacting with Classification Models8.1 Decision tree models; 8.2 Production rule models; 8.3 Caveat; CHAPTER 9. Guide to Using the System; 9.1 Files; 9.2 Running the programs; 9.3 Conducting experiments; 9.4 Using options: A credit approval example; CHAPTER 10. Limitations; 10.1 Geometric interpretation; 10.2 Nonrectangular regions; 10.3 Poorly delineated regions; 10.4 Fragmented regions; 10.5 A more cheerful note; CHAPTER 11. Desirable Additions; 11.1 Continuous classes; 11.2 Ordered discrete attributes; 11.3 Structured attributes; 11.4 Structured induction.
|
505 |
8 |
|
|a 11.5 Incremental induction11.6 Prospectus; Appendix: Program Listings; Brief descriptions of the contents of the files; Notes on some important data structures; File Makefile; Alphabetic index of routines; References and Bibliography; Author Index; Subject Index.
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Algorithms.
|
650 |
|
0 |
|a Computer programming.
|
650 |
|
0 |
|a Computer algorithms.
|
650 |
|
2 |
|a Algorithms
|0 (DNLM)D000465
|
650 |
|
2 |
|a Machine Learning
|0 (DNLM)D000069550
|
650 |
|
6 |
|a Apprentissage automatique.
|0 (CaQQLa)201-0131435
|
650 |
|
6 |
|a Algorithmes.
|0 (CaQQLa)201-0001230
|
650 |
|
6 |
|a Programmation (Informatique)
|0 (CaQQLa)201-0002014
|
650 |
|
7 |
|a algorithms.
|2 aat
|0 (CStmoGRI)aat300065585
|
650 |
|
7 |
|a computer programming.
|2 aat
|0 (CStmoGRI)aat300054641
|
650 |
|
7 |
|a COMPUTERS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Computer algorithms
|2 fast
|0 (OCoLC)fst00872010
|
650 |
|
7 |
|a Algorithms
|2 fast
|0 (OCoLC)fst00805020
|
650 |
|
7 |
|a Computer programming
|2 fast
|0 (OCoLC)fst00872390
|
650 |
|
7 |
|a Machine learning
|2 fast
|0 (OCoLC)fst01004795
|
650 |
1 |
7 |
|a Machine-learning.
|2 gtt
|
650 |
1 |
7 |
|a Algoritmen.
|2 gtt
|
650 |
|
7 |
|a Machine logique.
|2 ram
|
650 |
|
7 |
|a Apprentissage automatique.
|2 ram
|
650 |
|
7 |
|a Algorithmes.
|2 ram
|
650 |
|
7 |
|a Ordinateurs
|x Programmation.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Quinlan, J.R. (John Ross), 1943-
|t C4.5.
|d San Mateo, Calif. : Morgan Kaufmann Publishers, �1993
|w (DLC) 92032653
|w (OCoLC)26547590
|
830 |
|
0 |
|a Morgan Kaufmann series in machine learning.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780080500584
|z Texto completo
|