Cargando…

Metals and materials : science, processes, applications /

Metals and Materials: Science, Processes, Applications aims to present the science of materials in a readable and concise form that leads naturally to an explanation of the ways in which materials are processed and applied. The science of metals, or physical metallurgy, has developed naturally into...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Smallman, R. E. (Autor), Bishop, R. J. (Ray J.) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford ; Boston : Butterworth-Heinemann, 1995.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Metals and Materials: Science, Processes, Applications; Copyright Page ; Table of Contents; Preface; Chapter 1. The structure and bonding of atoms; 1.1 The realm of materials science; 1.2 The free atom; 1.3 The Periodic Table; 1.4 Interatomic bonding in materials; 1.5 Bonding and energy levels; Chapter 2. Atomic arrangements in materials; 2.1 The concept of ordering; 2.2 Crystal lattices and structures; 2.3 Crystal directions and planes; 2.4 Stereographic projection; 2.5 Selected crystal structures; 2.6 Inorganic glasses; 2.7 Polymeric structures.
  • Chapter 3. Structural phases: their formation and transitions3.1 Crystallization from the melt; 3.2 Principles of applications of phase diagrams; 3.3 Principles of alloy theory; 3.4 The mechanism of phase changes; Chapter 4. Defects in solids; 4.1 Types of imperfection; 4.2 Point defects; 4.3 Line defects; 4.4 Planar defects; 4.5 Volume defects; 4.6 Defect behaviour in some real materials; 4.7 Stability of defects; Chapter 5. The characterization of materials; 5.1 Tools of characterization; 5.2 Light microscopy; 5.3 X-ray diffraction analysis; 5.4 Analytical electron microscopy.
  • 5.5 Observation of defects5.6 Specialized bombardment techniques; 5.7 Thermal analysis; Chapter 6. The physical properties of materials; 6.1 Introduction; 6.2 Density; 6.3 Thermal properties; 6.4 Diffusion; 6.5 Anelasticity and internal friction; 6.6 Ordering in alloys; 6.7 Electrical properties; 6.8 Magnetic properties; 6.9 Dielectric materials; 6.10 Optical properties; Chapter 7. Mechanical behaviour of materials; 7.1 Mechanical testing procedures; 7.2 Elastic deformation; 7.3 Plastic deformation; 7.4 Dislocation behaviour during plastic deformation; 7.5 Mechanical twinning.
  • 7.6 Strengthening and hardening mechanisms7.7 Macroscopic plasticity; 7.8 Annealing; 7.9 Metallic creep; 7.10 Deformation mechanism maps; 7.11 Metallic fatigue; Chapter 8. Strengthening and toughening; 8.1 Introduction; 8.2 Strengthening of non-ferrous alloys by heat-treatment; 8.3 Strengthening of steels by heat-treatment; 8.4 Fracture and toughness; Chapter 9. Modern alloy developments; 9.1 Introduction; 9.2 Commercial steels; 9.3 Cast irons; 9.4 Superalloys; 9.5 Titanium alloys; 9.6 Structural intermetallic compounds; 9.7 Aluminium alloys; Chapter 10. Ceramics and glasses.
  • 10.1 Classification of ceramics10.2 General properties of ceramics; 10.3 Production of ceramic powders; 10.4 Selected engineering ceramics; 10.5 Aspects of glass technology; 10.6 The time-dependency of strength in ceramics and glasses; Chapter 11. Plastics and composites; 11.1 Utilization of polymeric materials; 11.2 Behaviour of plastics during processing; 11.3 Fibre-reinforced composite materials; Chapter 12. Corrosion and surface engineering; 12.1 The engineering importance of surfaces; 12.2 Metallic corrosion; 12.3 Surface engineering; Appendices; 1 SI units.