Cargando…

Mathematical basis of statistics /

Mathematical Basis of Statistics.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Barra, Jean Ren�e, 1934-
Otros Autores: Herbach, Leon H.
Formato: Electrónico eBook
Idioma:Inglés
Francés
Publicado: New York : Academic Press, 1981.
Colección:Probability and mathematical statistics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn610176164
003 OCoLC
005 20231117033110.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 100429s1981 nyu ob 001 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCF  |d OPELS  |d E7B  |d OCLCQ  |d YDXCP  |d OCLCQ  |d LUN  |d OCLCQ  |d UKAHL  |d VLY  |d OCLCO  |d OCLCQ  |d OCLCO  |d SFB  |d OCLCO 
066 |c (S 
019 |a 1100913706  |a 1397705181 
020 |a 9780120792405  |q (electronic bk.) 
020 |a 0120792400  |q (electronic bk.) 
020 |a 9781483191447  |q (e-book) 
020 |a 1483191443 
035 |a (OCoLC)610176164  |z (OCoLC)1100913706  |z (OCoLC)1397705181 
041 1 |a eng  |h fre 
042 |a dlr 
050 4 |a QA276 
082 0 4 |a 519.5  |2 19 
084 |a 31.73  |2 bcl 
100 1 |a Barra, Jean Ren�e,  |d 1934- 
240 1 0 |a Notions fondamentales de statistique math�ematique.  |l English 
245 1 0 |a Mathematical basis of statistics /  |c Jean-Ren�e Barra ; translation edited by Leon Herbach. 
260 |a New York :  |b Academic Press,  |c 1981. 
300 |a 1 online resource (xvi, 249 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Probability and mathematical statistics 
504 |a Includes bibliographical references (pages 243-245) and index. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 8 |a 5.P-Minimum Sufficient Subfields and Statistics6. Relationship among Freedom, Completeness, Sufficiency, and StochasticIndependence; 7. Existence of Free Events; Exercises; CHAPTER 3. Statistical Information; 1. Introduction; 2. Information (according to Fisher); Exercises; CHAPTER 4. Statistical Inference; 1. Introduction; 2. Decisions and Strategies; 3. Hypothesis Testing and Statistical Estimation; 4. Choosing a Strategy; 5. Quasi-Ordering Induced by a Loss Function; 6. Nuisance Parameters; Exercises; CHAPTER 5. Testing Statistical Hypotheses; 1. Definitions and Preliminary Remarks 
505 8 |a 2. Quasi-Ordering on Tests of Hypotheses3. Optimal Tests; 4. The Fundamental Neyman-Pearson Lemma; 5. Determining Optimal Tests; 6. Nonoptimal Methods; Exercises; CHAPTER 6. Statistical Estimation; 1. Unbiased Estimators; 2. Optimal Estimators; 3. Construction of Confidence Regions; 4. Optimal Set Estimators; Exercises; CHAPTER 7. The Multivariate Normal Distribution; 1. Some Useful Distributions; 2. Multivariate Normal Distributions; 3. Quadratic Forms of Normal Vectors; 4. Stochastic Dependence among Normal Vectors; Exercises; CHAPTER 8. Random Matrices; 1. Notation 
505 8 |a 2. Covariance and Characteristic Function of a Random Matrix3. Some Miscellaneous Results; 4. Fundamental Results; 5. Normal Random Matrix; 6. Generalized Gamma Distributions; 7. Bartlett's Decomposition of a Gamma Distribution; 8. Nonsingular Gamma Distribution; 9. Generalized Beta Distributions; 10. Generalized Noncentral Gamma Distributions; Exercises; CHAPTER 9. Linear-Normal Statistical Spaces; 1. The Cochran Theorem; 2. Linear-Normal Statistical Spaces; 3. Fundamental Theorems; 4. Testing Linear Hypotheses; 5. Estimation of Linear Functions 
505 8 |a 6. Fundamental Lemmas for Analysis of Variance7. Methodology of Analysis of Variance (Model I) in Experimental Design; 8. Analysis of Variance for Some Standard Experimental Designs; 9. Introduction to Analysis of Variance (Model II); 10. Generalized Linear-Normal Statistical Spaces; Exercises; CHAPTER 10. Exponential Statistical Spaces; 1. Laplace Transform of a Measure; 2. Analytical Properties of Exponential Statistical Spaces; 3. Sufficient Statistics on an Exponential Statistical Space; 4. Incomplete Exponential Statistical Spaces; 5. The Behrens-Fisher Problem; Exercises 
520 |a Mathematical Basis of Statistics. 
546 |a English. 
650 0 |a Mathematical statistics. 
650 7 |a Mathematical statistics  |2 fast  |0 (OCoLC)fst01012127 
700 1 |a Herbach, Leon H. 
776 0 8 |i Print version:  |a Barra, Jean Ren�e, 1934-  |s Notions fondamentales de statistique math�ematique. English.  |t Mathematical basis of statistics.  |d New York : Academic Press, 1981  |w (DLC) 80000579  |w (OCoLC)6918311 
830 0 |a Probability and mathematical statistics. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780120792405  |z Texto completo 
880 0 |6 505-00  |a Front Cover; Mathematical Basis of Statistics; Copyright Page; Table of Contents; Foreword; Editor's Preface; Preface; Notation and Terminology; CHAPTER 1. Statistical Spaces; 1. Statistical Spaces; the Dominated Case; 2. Statistics, Integrable Statistics, and Completeness; 3. Prior and Posterior Distributions; 4. Products of Statistical Spaces; Exercises; CHAPTER 2. Sufficiency and Freedom; 1. Sufficientσ-Fields and Sufficient Statistics; 2. Factorization Criterion of Sufficiency; 3. Projection of a Statistic; 4. Free Subfields and Distribution-Free Statistics