Cargando…

Pattern recognition /

This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-d...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Theodoridis, Sergios, 1951-
Otros Autores: Koutroumbas, Konstantinos, 1967-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Burlington, MA ; London : Academic Press, �2009.
Edición:4th ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction
  • 2. Classifiers based on Bayes Decision
  • 3. Linear Classifiers
  • 4. Nonlinear Classifiers
  • 5. Feature Selection
  • 6. Feature Generation I: Data Transformation and Dimensionality Reduction
  • 7. Feature Generation II
  • 8. Template Matching
  • 9. Context Depedant Clarification
  • 10. System Evaultion
  • 11. Clustering: Basic Concepts
  • 12. Clustering Algorithms: Algorithms L Sequential
  • 13. Clustering Algorithms II: Hierarchical
  • 14. Clustering Algorithms III: Based on Function Optimization
  • 15. Clustering Algorithms IV: Clustering
  • 16. Cluster Validity.
  • Classifiers based on Bayes Decision Theory
  • Linear classifiers
  • Nonlinear classifiers
  • Feature selection
  • Feature generation I : data transformation and dimensionality reduction
  • Feature generation II
  • Template matching
  • Context-dependent classification
  • Supervised learning : the epilogue
  • Clustering algorithms I : sequential algorithms
  • Clustering algorithms II : hierarchial algorithms
  • Clustering algorithms III : schemes based on function optimization
  • Clustering algorithms IV
  • Cluster validity.