Cargando…

Symbolic logic and mechanical theorem proving

This book contains an introduction to symbolic logic and a thorough discussion of mechanical theorem proving and its applications. The book consists of three major parts. Chapters 2 and 3 constitute an introduction to symbolic logic. Chapters 4-9 introduce several techniques in mechanical theorem pr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Chang, Chin-Liang, 1937-, Lee, Richard Char-Tung, 1939- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, Academic Press [1973]
Colección:Computer science and applied mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 4500
001 SCIDIR_ocn609594252
003 OCoLC
005 20231117033100.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 100426s1973 nyua ob 001 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCF  |d OPELS  |d N$T  |d E7B  |d EBLCP  |d IDEBK  |d NLGGC  |d DEBSZ  |d YDXCP  |d OCLCQ  |d DEBBG  |d OCLCQ  |d MERUC  |d OCLCQ  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 898771679  |a 922386942  |a 935246871  |a 1162265009 
020 |a 9780080917283  |q (electronic bk.) 
020 |a 0080917283  |q (electronic bk.) 
020 |a 1493300245 
020 |a 9781493300242 
035 |a (OCoLC)609594252  |z (OCoLC)898771679  |z (OCoLC)922386942  |z (OCoLC)935246871  |z (OCoLC)1162265009 
042 |a dlr 
050 4 |a QA9  |b .C483 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511/.3  |2 18 
100 1 |a Chang, Chin-Liang,  |d 1937- 
245 1 0 |a Symbolic logic and mechanical theorem proving  |c [by] Chin-liang Chang [and] Richard Char-Tung Lee. 
260 |a New York,  |b Academic Press  |c [1973] 
300 |a 1 online resource (xiii, 331 pages)  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Computer science and applied mathematics 
504 |a Includes bibliographical references (pages 309-324). 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
520 |a This book contains an introduction to symbolic logic and a thorough discussion of mechanical theorem proving and its applications. The book consists of three major parts. Chapters 2 and 3 constitute an introduction to symbolic logic. Chapters 4-9 introduce several techniques in mechanical theorem proving, and Chapters 10 an 11 show how theorem proving can be applied to various areas such as question answering, problem solving, program analysis, and program synthesis. 
505 0 |a Front Cover; Symbolic Logic and Mechanical Theorem Proving; Copyright Page; Dedication; Table of Contents; Preface; Acknowledgments; Chapter1. Introduction; 1.1 Artificial Intelligence, Symbolic Logic, and Theorem Proving; 1.2 Mathematical Background; References; Chapter2. The Propositional Logic; 2.1 Introduction; 2.2 Interpretations of Formulas in the Propositional Logic; 2.3 Validity and Inconsistency in the Propositional Logic; 2.4 Normal Forms in the PropositionalLogic; 2.5 Logical Consequences; 2.6 Applications of the Propositional Logic; References; Exercises. 
505 8 |a Chapter3. The First-Order Logic3.1 Introduction; 3.2 Interpretations of Formulas in the First-Order Logic; 3.3 Prenex Normal Forms in the First-Order Logic; 3.4 Applications of the First-OrderLogic; References; Exercises; Chapter4. Herbrand's Theorem; 4.1 Introduction; 4.2 Skolem Standard Forms; 4.3 The Herbrand Universe of a Set of Clauses; 4.4 Semantic Trees; 4.5 Herbrand'sTheorem; 4.6 Implementation of Herbrand's Theorem; References; Exercises; Chapter5. The Resolution Principle; 5.1 Introduction; 5.2 The Resolution Principle for the Propositional Logic; 5.3 Substitution and Unification. 
505 8 |a 5.4 Unification Algorithm5.5 The Resolution Principle for the First-Order Logic; 5.6 Completeness of the Resolution Principle; 5.7 Examples Using the ResolutionPrinciple; 5.8 Deletion Strategy; References; Exercises; Chapter6. Semantic Resolution and Lock Resolution; 6.1 Introduction; 6.2 An Informal Introduction to Semantic Resolution; 6.3 Formal Definitions and Examples of Semantic Resolution; 6.4 Completeness of Semantic Resolution; 6.5 Hyperresolution and the Set-of-Support Strategy: Special Cases of Semantic Resolution; 6.6 Semantic Resolution Using Ordered Clauses. 
505 8 |a 6.7 Implementation of Semantic Resolution6.8 Lock Resolution; 6.9 Completeness of LockResolution; References; Exercises; Chapter7. Linear Resolution; 7.1 Introduction; 7.2 Linear Resolution; 7.3 Input Resolution and Unit Resolution; 7.4 Linear Resolution UsingOrdered Clauses and the Information of Resolved Literals; 7.5 Completeness of Linear Resolution; 7.6 Linear Deduction and TreeSearching; 7.7 Heuristics in Tree Searching; 7.8 Estimations of Evaluation Functions; References; Exercises; Chapter8. The Equality Relation; 8.1 Introduction; 8.2 Unsatisfiability under Special Classes of Models. 
505 8 |a 8.3 Paramodulation-An Inference Rule for Equality8.4 Hyperparamodulation; 8.5 Input and Unit Paramodulations; 8.6 Linear Paramodulation; References; Exercises; Chapter9. Some Proof Procedures Based on Herbrand's Theorem; 9.1 Introduction; 9.2 The Prawitz Procedure; 9.3 The V-Resolution Procedure; 9.4 Pseudosemantic Trees; 9.5 A Procedure for Generating Closed Pseudosemantic Trees; 9.6 A Generalization of the Splitting Rule of Davis and Putnam; References; Exercises; Chapter10. Program Analysis; 10.1 Introduction; 10.2 An Informal Discussion; 10.3 Formal D�efinitions of Programs. 
546 |a English. 
650 0 |a Logic, Symbolic and mathematical. 
650 0 |a Automatic theorem proving. 
650 0 |a Artificial intelligence. 
650 2 |a Artificial Intelligence  |0 (DNLM)D001185 
650 6 |a Logique symbolique et math�ematique.  |0 (CaQQLa)201-0001166 
650 6 |a Th�eor�emes  |x D�emonstration automatique.  |0 (CaQQLa)201-0031979 
650 6 |a Intelligence artificielle.  |0 (CaQQLa)201-0008626 
650 7 |a artificial intelligence.  |2 aat  |0 (CStmoGRI)aat300251574 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Automatic theorem proving.  |2 fast  |0 (OCoLC)fst00822777 
650 7 |a Logic, Symbolic and mathematical.  |2 fast  |0 (OCoLC)fst01002068 
650 7 |a Logique symbolique et math�ematique.  |2 ram 
650 7 |a Intelligence artificielle.  |2 ram 
650 7 |a Th�eor�emes  |x d�emonstration automatique.  |2 ram 
700 1 |a Lee, Richard Char-Tung,  |d 1939-  |e author. 
776 0 8 |i Print version:  |a Chang, Chin-Liang, 1937-  |t Symbolic logic and mechanical theorem proving.  |d New York, Academic Press [1973]  |w (DLC) 72088358  |w (OCoLC)658102 
830 0 |a Computer science and applied mathematics. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080917283  |z Texto completo