Lectures in scattering theory /
Lectures in Scattering Theory.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés Ruso |
Publicado: |
Oxford ; New York :
Pergamon Press,
[1971]
|
Edición: | [1st ed.]. |
Colección: | International series of monographs in natural philosophy ;
v. 39. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Chapter 9. Complex Angular Momenta9.1. Analytic Properties of the Scattering Matrix in the Complex Angular Momentum Plane; 9.2. Poles of the Scattering Matrix in the Complex Angular Momentum Plane; 9.3. Asymptotic Behaviour of the Scattering Amplitude when COS [theta][right arrow][infinity]; Chapter 10. Separable Representation of the Scattering Amplitude; 10.1. The Scattering Amplitude off the Energy Surface; 10.2. The Hilbert-Schmidt Expansion for the Scattering Amplitude; 10.3. Properties of the Eigenvalues and Eigenfunctions of the Kernel of the Lippmann-Schwinger Equation.
- Front Cover; Lectures in Scattering Theory; Copyright Page; Table of Contents; Preface; Chapter 1. Quantum-mechanical Description and Representations; 1.1. Quantum-mechanical Description of Physical Systems; 1.2. The Schr�odinger Representation; 1.3. The Heisenberg Representation; 1.4. The Interaction Representation; Chapter 2. The Scattering Matrix and Transition Probability; 2.1. The Scattering Matrix; 2.2. The Time-shift Operator in the Interaction Representation; 2.3. Integrals of Motion and Diagonalization of the 5-Matrix; 2.4. The Transition Probability per Unit Time.
- 2.5. An Integral Equation for the /-Matrix2.6. Transformation of the Scattering Matrix. Cross-sections; Chapter 3. Stationary Scattering Theory; 3.1. The Scattering Amplitude; 3.2. The Lippmann-Schwinger Equation; 3.3. The Relation between the Scattering Amplitude and the Transition Matrix; 3.4. Inelastic Scattering and Reactions; 3.5. The Born Approximation; Chapter 4. Wave Function of a Particle in an External Field; 4.1. Scattering in a Central Field. Expansion in Partial Waves; 4.2. The Rectangular Potential Well; 4.3. The Coulomb Field; Chapter 5. The Optical Theorem.
- 5.1. The Relation between the Total Cross-section and the Elastic Scattering Amplitude5.2. The Unitarity Relation for the Elastic Scattering Amplitude; Chapter 6. Time Reversal and the Reciprocity Theorem; 6.1. Transformation of the Wave Functions and Operators on Time Reversal; 6.2. The Time-reversal Operator for Specific Systems; 6.3. The Time-reversed Wave Function; 6.4. The Reciprocity Theorem and Detailed Balance; Chapter 7. Analytic Properties of the Scattering Matrix; 7.1. Analytic Properties of the Radial Wave Functions; 7.2. The Case of Non-zero Angular Momenta.
- 7.3. Zeros of the Jost Function and Bound States7.4. The Symmetry and Location of the Scattering Matrix Singularities in the Complex Plane; 7.5. Bound States and Redundant Zeros; 7.6. Quasi-stationary States and Resonances; 7.7. Virtual States; 7.8. The Scattering Matrix in the Case of a Rectangular Potential Well; Chapter 8. Dispersion Relations; 8.1. Integral Representations of the Jost Functions; 8.2. Levinson's Theorem; 8.3. The Complex Energy Surface; 8.4. Analyticity of the Scattering Matrix and the Causality Principle; 8.5. Dispersion Relations for the Scattering Amplitude.