The mathematical foundations of the finite element method with applications to partial differential equations [proceedings]
The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations.
Clasificación: | Libro Electrónico |
---|---|
Autores Corporativos: | , , |
Otros Autores: | |
Formato: | Electrónico Congresos, conferencias eBook |
Idioma: | Inglés |
Publicado: |
New York,
Academic Press,
1972.
|
Colección: | Academic Press rapid manuscript reproductions.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations; Copyright Page; Table of Contents; CONTRIBUTORS; PREFACE; PART I: SURVEY LECTURES ON THE MATHEMATICAL FOUNDATIONS OF THE FINITE ELEMENT METHOD; FOREWORD; CHAPTER 1. PRELIMINARY REMARKS; 1.1. Introduction; 1.2. Numerical solution of partial differential equations; 1.3. Finite Element Method.; 1.4. The sources of the theory of the finite element method; 1.5. The mathematical foundations of the finite element method.; Reference; CHAPTER 2. THE FUNDAMENTAL NOTIONS
- 6.4. Lower bounds for the finite element methodREFERENCES; CHAPTER 7. ONE PARAMETER FAMILIES OF VARIATIONAL PRINCIPLES; 7-1. Introduction; 7.2. The Penalty Method; 7.3. The weighted least square method.; References.; CHAPTER 8, FINITE ELEMENT METHOD FOR NON-SMOOTH DOMAINS AND COEFFICIENTS; 8.1. Introduction; 8.2. Problems with Lipschitzian domain.; 8.3. Problems with piecewise smooth domain; 8.4. The problem with a piecewise smooth domain-Continuation; 8.5. The interface problem; 8.6. Abrupt changes of the boundary conditions; REFERENCES
- CHAPTER 9. THE PROBLEMS OF PERTURBATIONS IN THE FINITE ELEMENT METHOD9.1. Introduction; 9.2. The problem of linear perturbation operators; 9.3. Penalty method with linear perturbations; 9.4. Problems of nonlinear perturbations; REFERENCES; CHAPTER 10. THE EIGENVALUE PROBLEM; 10.1 Introduction; 10.2. The eigenvalue problem; 10.3. The linear eigenvalue problem; 10.4. Associated Eigenvalue Problems; 10.5. The approximation of the eigenvalue problem; 10.6. The approximation of the eigenvalue problem (continuation); 10.7. Examples; 10.8. Additional comments; REFERENCES.