Methods of contour integration /
Methods of Contour Integration.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés Ruso |
Publicado: |
Amsterdam :
North-Holland Pub. Co.,
1967.
|
Colección: | North-Holland series in applied mathematics and mechanics ;
v. 3. |
Temas: | |
Acceso en línea: | Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn567961397 | ||
003 | OCoLC | ||
005 | 20231117032949.0 | ||
006 | m o d | ||
007 | cr bn||||||abp | ||
007 | cr bn||||||ada | ||
008 | 100323s1967 ne a ob 000 0 eng d | ||
040 | |a OCLCE |b eng |e pn |c OCLCE |d OCLCQ |d OCLCO |d OCLCQ |d OCLCF |d UIU |d EBLCP |d IDEBK |d N$T |d YDXCP |d COO |d DEBSZ |d OCLCQ |d UAB |d OCLCQ |d MERUC |d OCLCQ |d VLY |d INARC |d S2H |d OCLCO |d OCLCQ |d OCLCO |d COM |d OCLCQ | ||
066 | |c (S | ||
019 | |a 300508292 |a 898101673 |a 900168666 |a 974769715 |a 974855941 |a 985641196 |a 985770979 |a 1150282216 |a 1162328485 |a 1187185761 |a 1197553593 |a 1257352302 | ||
020 | |a 9781483275000 | ||
020 | |a 1483275000 | ||
020 | |a 9781483230399 | ||
020 | |a 1483230392 | ||
035 | |a (OCoLC)567961397 |z (OCoLC)300508292 |z (OCoLC)898101673 |z (OCoLC)900168666 |z (OCoLC)974769715 |z (OCoLC)974855941 |z (OCoLC)985641196 |z (OCoLC)985770979 |z (OCoLC)1150282216 |z (OCoLC)1162328485 |z (OCoLC)1187185761 |z (OCoLC)1197553593 |z (OCoLC)1257352302 | ||
041 | 1 | |a eng |h rus | |
042 | |a dlr | ||
050 | 4 | |a QA374 |b .R313 | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 0 | 4 | |a 517/.38 |
100 | 1 | |a Rasulov, M. L. |q (Medzhid L�i�atifovich) | |
240 | 1 | 0 | |a Metod konturnogo integrala. |l English |
245 | 1 | 0 | |a Methods of contour integration / |c by M.L. Rasulov. |
260 | |a Amsterdam : |b North-Holland Pub. Co., |c 1967. | ||
300 | |a 1 online resource (xiv, 439 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a North-Holland series in applied mathematics and mechanics ; |v v. 3 | |
504 | |a Includes bibliographical references (pages 433-437). | ||
506 | |3 Use copy |f Restrictions unspecified |2 star |5 MiAaHDL | ||
533 | |a Electronic reproduction. |b [Place of publication not identified] : |c HathiTrust Digital Library, |d 2010. |5 MiAaHDL | ||
538 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |u http://purl.oclc.org/DLF/benchrepro0212 |5 MiAaHDL | ||
583 | 1 | |a digitized |c 2010 |h HathiTrust Digital Library |l committed to preserve |2 pda |5 MiAaHDL | |
588 | 0 | |a Print version record. | |
505 | 0 | |6 880-01 |a Front Cover; Methods of Contour Integration; Copyright Page; Preface; Editorial Note; Table of Contents; Introduction; Part One: THE RESIDUE METHOD; CHAPTER 1. Dini's theorem generalised; 1.1 LAGRANGE'S FORMULA AND SYSTEMS OF INTEGRAL EQUATIONS; 1.2 GENERALISED EXISTENCE THEOREM; 1.3 EXISTENCE THEOREMS; CHAPTER 2. Asymptotic representations of solutions of linear differential equations with a complex parameter; 2.1 FORMAL SOLUTIONS OF FIRST-ORDER SYSTEMS; 2.2 ASYMPTOTIC REPRESENTATIONS OF SOLUTIONS OF A SYSTEM OF FIRST-ORDER EQUATIONS | |
505 | 8 | |a 2.3. ASYMPTOTIC REPRESENTATIONS OF SOLUTIONS OF A SINGLE EQUATION OF HIGHER ORDERCHAPTER 3. Expansion of vector-valued functions; 3.1 BOUNDARY-VALUE PROBLEMS FOR A SYSTEM OF FIRST-ORDER EQUATIONS WITH PIECEWISE-SMOOTH COEFFICIENTS; 3.2 THEOREM ON THE EXPANSION IN SERIES OF RESIDUES OF SOLUTIONS OF BOUNDARY-VALUE PROBLEMS WITH A PARAMETER FOR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS COEFFICIENTS; 3.3 DERIVATION OF THE SOLUTION OF THE SPECTRAL PROBLEM FOR A SINGLE EQUATION OF HIGHER ORDER WITH DISCONTINUOUS COEFFICIENTS | |
505 | 8 | |a CHAPTER 4. Solution of one-dimensional mixed problems for systems of equations with discontinuous coefficients4.1 MIXED PROBLEMS WITH BOUNDARY CONDITIONS CONTAINING TIME DERIVATIVES; 4.2 MIXED PROBLEMS WITH BOUNDARY CONDITIONS CONTAINING NO TIME DERIVATIVES; 4.3 THE MIXED PROBLEM WITH SEPARABLE VARIABLES; CHAPTER 5. Residue method for solving multi-dimensional mixed problems; 5.1 PROCEDURE FOR SOLVING MULTI-DIMENSIONAL MIXED PROBLEMS; 5.2 RESIDUE METHOD OF SEPARATING VARIABLES | |
505 | 8 | |a 6.3 SOLUTION OF THE MIXED PROBLEM (6.1.1)-(6.1.3) WITH PARABOLICITY IN THE SENSE OF PETROVSKIY6.4 EXPANSION OF AN ARBITRARY FUNCTION IN A SERIES OF RESIDUES OF THE SPECTRAL PROBLEM: NECESSARY AND SUFFICIENT CONDITIONS FOR THE CORRECT FORMULATION OF PROBLEM (6.1.1)-(6.1.3); 6.5 SOLUTION OF MIXED PROBLEMS FOR EQUATIONS CONTAINING FIRST-ORDER TIME DERIVATIVES: NECESSARY AND SUFFICIENT CONDITIONS; CHAPTER 7. Solution of one-dimensional mixed problems for linear differential equations with discontinuous coefficients and time-dependent boundary conditions | |
520 | |a Methods of Contour Integration. | ||
546 | |a English. | ||
650 | 0 | |a Boundary value problems. | |
650 | 0 | |a Integrals. | |
650 | 6 | |a Probl�emes aux limites. |0 (CaQQLa)201-0019897 | |
650 | 6 | |a Int�egrales. |0 (CaQQLa)201-0014174 | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Boundary value problems. |2 fast |0 (OCoLC)fst00837122 | |
650 | 7 | |a Integrals. |2 fast |0 (OCoLC)fst00975518 | |
776 | 0 | 8 | |i Print version: |a Rasulov, M.L. (Medzhid L�i�atifovich). |s Metod konturnogo integrala. English. |t Methods of contour integration. |d Amsterdam, North-Holland Pub. Co., 1967 |w (DLC) 67020014 |w (OCoLC)1521126 |
830 | 0 | |a North-Holland series in applied mathematics and mechanics ; |v v. 3. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9781483230399 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/bookseries/01675931/3 |z Texto completo |
880 | 8 | |6 505-01/(S |a 7.1 ASYMPTOTIC REPRESENTATION OF THE SOLUTION OF ASPECTRAL PROBLEM OUTSIDE A δ -- NEIGHBOURHOOD |