Cargando…

Methods of contour integration /

Methods of Contour Integration.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rasulov, M. L. (Medzhid L�i�atifovich)
Formato: Electrónico eBook
Idioma:Inglés
Ruso
Publicado: Amsterdam : North-Holland Pub. Co., 1967.
Colección:North-Holland series in applied mathematics and mechanics ; v. 3.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn567961397
003 OCoLC
005 20231117032949.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 100323s1967 ne a ob 000 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d UIU  |d EBLCP  |d IDEBK  |d N$T  |d YDXCP  |d COO  |d DEBSZ  |d OCLCQ  |d UAB  |d OCLCQ  |d MERUC  |d OCLCQ  |d VLY  |d INARC  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ 
066 |c (S 
019 |a 300508292  |a 898101673  |a 900168666  |a 974769715  |a 974855941  |a 985641196  |a 985770979  |a 1150282216  |a 1162328485  |a 1187185761  |a 1197553593  |a 1257352302 
020 |a 9781483275000 
020 |a 1483275000 
020 |a 9781483230399 
020 |a 1483230392 
035 |a (OCoLC)567961397  |z (OCoLC)300508292  |z (OCoLC)898101673  |z (OCoLC)900168666  |z (OCoLC)974769715  |z (OCoLC)974855941  |z (OCoLC)985641196  |z (OCoLC)985770979  |z (OCoLC)1150282216  |z (OCoLC)1162328485  |z (OCoLC)1187185761  |z (OCoLC)1197553593  |z (OCoLC)1257352302 
041 1 |a eng  |h rus 
042 |a dlr 
050 4 |a QA374  |b .R313 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 517/.38 
100 1 |a Rasulov, M. L.  |q (Medzhid L�i�atifovich) 
240 1 0 |a Metod konturnogo integrala.  |l English 
245 1 0 |a Methods of contour integration /  |c by M.L. Rasulov. 
260 |a Amsterdam :  |b North-Holland Pub. Co.,  |c 1967. 
300 |a 1 online resource (xiv, 439 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a North-Holland series in applied mathematics and mechanics ;  |v v. 3 
504 |a Includes bibliographical references (pages 433-437). 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |6 880-01  |a Front Cover; Methods of Contour Integration; Copyright Page; Preface; Editorial Note; Table of Contents; Introduction; Part One: THE RESIDUE METHOD; CHAPTER 1. Dini's theorem generalised; 1.1 LAGRANGE'S FORMULA AND SYSTEMS OF INTEGRAL EQUATIONS; 1.2 GENERALISED EXISTENCE THEOREM; 1.3 EXISTENCE THEOREMS; CHAPTER 2. Asymptotic representations of solutions of linear differential equations with a complex parameter; 2.1 FORMAL SOLUTIONS OF FIRST-ORDER SYSTEMS; 2.2 ASYMPTOTIC REPRESENTATIONS OF SOLUTIONS OF A SYSTEM OF FIRST-ORDER EQUATIONS 
505 8 |a 2.3. ASYMPTOTIC REPRESENTATIONS OF SOLUTIONS OF A SINGLE EQUATION OF HIGHER ORDERCHAPTER 3. Expansion of vector-valued functions; 3.1 BOUNDARY-VALUE PROBLEMS FOR A SYSTEM OF FIRST-ORDER EQUATIONS WITH PIECEWISE-SMOOTH COEFFICIENTS; 3.2 THEOREM ON THE EXPANSION IN SERIES OF RESIDUES OF SOLUTIONS OF BOUNDARY-VALUE PROBLEMS WITH A PARAMETER FOR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS COEFFICIENTS; 3.3 DERIVATION OF THE SOLUTION OF THE SPECTRAL PROBLEM FOR A SINGLE EQUATION OF HIGHER ORDER WITH DISCONTINUOUS COEFFICIENTS 
505 8 |a CHAPTER 4. Solution of one-dimensional mixed problems for systems of equations with discontinuous coefficients4.1 MIXED PROBLEMS WITH BOUNDARY CONDITIONS CONTAINING TIME DERIVATIVES; 4.2 MIXED PROBLEMS WITH BOUNDARY CONDITIONS CONTAINING NO TIME DERIVATIVES; 4.3 THE MIXED PROBLEM WITH SEPARABLE VARIABLES; CHAPTER 5. Residue method for solving multi-dimensional mixed problems; 5.1 PROCEDURE FOR SOLVING MULTI-DIMENSIONAL MIXED PROBLEMS; 5.2 RESIDUE METHOD OF SEPARATING VARIABLES 
505 8 |a 6.3 SOLUTION OF THE MIXED PROBLEM (6.1.1)-(6.1.3) WITH PARABOLICITY IN THE SENSE OF PETROVSKIY6.4 EXPANSION OF AN ARBITRARY FUNCTION IN A SERIES OF RESIDUES OF THE SPECTRAL PROBLEM: NECESSARY AND SUFFICIENT CONDITIONS FOR THE CORRECT FORMULATION OF PROBLEM (6.1.1)-(6.1.3); 6.5 SOLUTION OF MIXED PROBLEMS FOR EQUATIONS CONTAINING FIRST-ORDER TIME DERIVATIVES: NECESSARY AND SUFFICIENT CONDITIONS; CHAPTER 7. Solution of one-dimensional mixed problems for linear differential equations with discontinuous coefficients and time-dependent boundary conditions 
520 |a Methods of Contour Integration. 
546 |a English. 
650 0 |a Boundary value problems. 
650 0 |a Integrals. 
650 6 |a Probl�emes aux limites.  |0 (CaQQLa)201-0019897 
650 6 |a Int�egrales.  |0 (CaQQLa)201-0014174 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Boundary value problems.  |2 fast  |0 (OCoLC)fst00837122 
650 7 |a Integrals.  |2 fast  |0 (OCoLC)fst00975518 
776 0 8 |i Print version:  |a Rasulov, M.L. (Medzhid L�i�atifovich).  |s Metod konturnogo integrala. English.  |t Methods of contour integration.  |d Amsterdam, North-Holland Pub. Co., 1967  |w (DLC) 67020014  |w (OCoLC)1521126 
830 0 |a North-Holland series in applied mathematics and mechanics ;  |v v. 3. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781483230399  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/01675931/3  |z Texto completo 
880 8 |6 505-01/(S  |a 7.1 ASYMPTOTIC REPRESENTATION OF THE SOLUTION OF ASPECTRAL PROBLEM OUTSIDE A δ -- NEIGHBOURHOOD