Cargando…

The theory of Lebesgue measure and integration

The Theory of Lebesgue Measure and Integration.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hartman, Stanis�aw
Otros Autores: Mikusi�nski, Jan
Formato: Electrónico eBook
Idioma:Inglés
Polaco
Publicado: New York, Pergamon Press, [1961]
Edición:Enl. ed.,
Colección:International series of monographs in pure and applied mathematics ; 15.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 4500
001 SCIDIR_ocn564904003
003 OCoLC
005 20231117032938.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 100321s1961 nyua ob 000 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCF  |d OCLCO  |d OPELS  |d N$T  |d DEBSZ  |d YDXCP  |d OCLCQ  |d MERUC  |d OCLCQ  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 297604185 
020 |a 9781483280332  |q (electronic bk.) 
020 |a 1483280330  |q (electronic bk.) 
020 |z 9780080095257 
035 |a (OCoLC)564904003  |z (OCoLC)297604185 
041 1 |a eng  |h pol 
042 |a dlr 
050 4 |a QA312  |b .H313 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.43  |2 23 
100 1 |a Hartman, Stanis�aw. 
245 1 4 |a The theory of Lebesgue measure and integration  |c by S. Hartman and J. Mikusi�nski. 
250 |a Enl. ed.,  |b translated from Polish by Leo F. Boron. 
260 |a New York,  |b Pergamon Press,  |c [1961] 
300 |a 1 online resource (176 pages)  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a International series of monographs on pure and applied mathematics,  |v 15 
504 |a Includes bibliographical references. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |a Front Cover; The Theory of Lebesgue Measure and Integration; Copyright Page; Table of Contents; Foreword to the English Edition; CHAPTER I. INTRODUCTORY CONCEPTS; 1. Sets; 2. Denumerability and nondenumerability; 3. Open sets and closed sets on the real line; CHAPTERII. LEBESGUE MEASURE OF LINEAR SETS; 1. Measure of open sets; 2. Definition of Lebesgue measure. Measurability; 3. Countable additivity of measure; 4. Sets of measure zero; 5. Non-measurable sets; CHAPTERIII. MEASURABLE FUNCTIONS; 1. Measurability of functions; 2. Operations on measurable functions; 3. Addenda 
505 8 |a CHAPTERIV. THE DEFINITE LEBESGUE INTEGRAL1. The integral of a bounded function; 2. Generalization to unbounded functions; 3. Integration of sequences of functions; 4. Comparison of the Riemann and Lebesgue integrals; 5. The integral on an infinite interval; CHAPTERV. CONVERGENCE IN MEASURE AND EQUI-INTEGRABILITY; 1. Convergence in measure; 2. Equi-integrability; CHAPTERVI. INTEGRATION AND DIFFERENTIATION FUNCTIONS OF FINITE VARIATION; 1. Preliminary remarks; 2. Functions of finite variation; 3. The derivative of an integral; 4. Density points; CHAPTERVII. ABSOLUTELY CONTINUOUS FUNCTIONS 
505 8 |a 1. Definition and fundamental properties2. The approximation of measurable functions by continuousfunctions; CHAPTERVIII. SPACES OF p-th POWER INTEGRABLE FUNCTIONS; 1. The classes Lp(a, b); 2. Arithmetic and geometric means; 3. Holder's inequality; 4. Minkowski's inequality; 5. The classes Lp considered as metric spaces; 6. Mean convergence of order p; 7. Approximation by continuous functions; CHAPTERIX. ORTHOGONAL EXPANSIONS; 1. General properties; 2. Completeness; CHAPTERX. COMPLEX-VALUED FUNCTIONS OF A REAL VARIABLE; 1. The Holder and Minkowski inequalities for p, q <1 
505 8 |a 2. Integrals of complex-valued functions3. The expansion of complex-valued functions in orthogonalseries; CHAPTERXI. MEASURE IN THE PLANE AND IN SPACE; 1. Definition and properties; 2. Plane measure and linear measure; CHAPTERXII. MULTIPLE INTEGRALS; 1. Definition and fundamental properties; 2. Multiple integrals and iterated integrals; 3. The double integral on unbounded sets; 4. Applications; CHAPTERXIII. THE STIELTJES INTEGRAL; 1. Definition and existence; 2. Integration by parts and the limit of integrals; 3. Relation between the Stielt j es integral and Lebesgueintegral; Literature 
520 |a The Theory of Lebesgue Measure and Integration. 
650 0 |a Integrals, Generalized. 
650 6 |a Int&#xFFFD;egrales g&#xFFFD;en&#xFFFD;eralis&#xFFFD;ees.  |0 (CaQQLa)201-0005694 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Integrals, Generalized  |2 fast  |0 (OCoLC)fst00975523 
700 1 |a Mikusi&#xFFFD;nski, Jan. 
776 0 8 |i Print version:  |a Hartman, Stanis&#xFFFD;aw.  |t Theory of Lebesgue measure and integration.  |b Enl. ed.  |d New York, Pergamon Press, [1961]  |w (OCoLC)26744809 
830 0 |a International series of monographs in pure and applied mathematics ;  |v 15. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080095257  |z Texto completo