The theory of Lebesgue measure and integration
The Theory of Lebesgue Measure and Integration.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés Polaco |
Publicado: |
New York,
Pergamon Press,
[1961]
|
Edición: | Enl. ed., |
Colección: | International series of monographs in pure and applied mathematics ;
15. |
Temas: | |
Acceso en línea: | Texto completo |
MARC
LEADER | 00000cam a2200000 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn564904003 | ||
003 | OCoLC | ||
005 | 20231117032938.0 | ||
006 | m o d | ||
007 | cr bn||||||abp | ||
007 | cr bn||||||ada | ||
008 | 100321s1961 nyua ob 000 0 eng d | ||
040 | |a OCLCE |b eng |e pn |c OCLCE |d OCLCQ |d OCLCF |d OCLCO |d OPELS |d N$T |d DEBSZ |d YDXCP |d OCLCQ |d MERUC |d OCLCQ |d VLY |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 297604185 | ||
020 | |a 9781483280332 |q (electronic bk.) | ||
020 | |a 1483280330 |q (electronic bk.) | ||
020 | |z 9780080095257 | ||
035 | |a (OCoLC)564904003 |z (OCoLC)297604185 | ||
041 | 1 | |a eng |h pol | |
042 | |a dlr | ||
050 | 4 | |a QA312 |b .H313 | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 0 | 4 | |a 515/.43 |2 23 |
100 | 1 | |a Hartman, Stanis�aw. | |
245 | 1 | 4 | |a The theory of Lebesgue measure and integration |c by S. Hartman and J. Mikusi�nski. |
250 | |a Enl. ed., |b translated from Polish by Leo F. Boron. | ||
260 | |a New York, |b Pergamon Press, |c [1961] | ||
300 | |a 1 online resource (176 pages) |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a International series of monographs on pure and applied mathematics, |v 15 | |
504 | |a Includes bibliographical references. | ||
506 | |3 Use copy |f Restrictions unspecified |2 star |5 MiAaHDL | ||
533 | |a Electronic reproduction. |b [Place of publication not identified] : |c HathiTrust Digital Library, |d 2010. |5 MiAaHDL | ||
538 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |u http://purl.oclc.org/DLF/benchrepro0212 |5 MiAaHDL | ||
583 | 1 | |a digitized |c 2010 |h HathiTrust Digital Library |l committed to preserve |2 pda |5 MiAaHDL | |
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; The Theory of Lebesgue Measure and Integration; Copyright Page; Table of Contents; Foreword to the English Edition; CHAPTER I. INTRODUCTORY CONCEPTS; 1. Sets; 2. Denumerability and nondenumerability; 3. Open sets and closed sets on the real line; CHAPTERII. LEBESGUE MEASURE OF LINEAR SETS; 1. Measure of open sets; 2. Definition of Lebesgue measure. Measurability; 3. Countable additivity of measure; 4. Sets of measure zero; 5. Non-measurable sets; CHAPTERIII. MEASURABLE FUNCTIONS; 1. Measurability of functions; 2. Operations on measurable functions; 3. Addenda | |
505 | 8 | |a CHAPTERIV. THE DEFINITE LEBESGUE INTEGRAL1. The integral of a bounded function; 2. Generalization to unbounded functions; 3. Integration of sequences of functions; 4. Comparison of the Riemann and Lebesgue integrals; 5. The integral on an infinite interval; CHAPTERV. CONVERGENCE IN MEASURE AND EQUI-INTEGRABILITY; 1. Convergence in measure; 2. Equi-integrability; CHAPTERVI. INTEGRATION AND DIFFERENTIATION FUNCTIONS OF FINITE VARIATION; 1. Preliminary remarks; 2. Functions of finite variation; 3. The derivative of an integral; 4. Density points; CHAPTERVII. ABSOLUTELY CONTINUOUS FUNCTIONS | |
505 | 8 | |a 1. Definition and fundamental properties2. The approximation of measurable functions by continuousfunctions; CHAPTERVIII. SPACES OF p-th POWER INTEGRABLE FUNCTIONS; 1. The classes Lp(a, b); 2. Arithmetic and geometric means; 3. Holder's inequality; 4. Minkowski's inequality; 5. The classes Lp considered as metric spaces; 6. Mean convergence of order p; 7. Approximation by continuous functions; CHAPTERIX. ORTHOGONAL EXPANSIONS; 1. General properties; 2. Completeness; CHAPTERX. COMPLEX-VALUED FUNCTIONS OF A REAL VARIABLE; 1. The Holder and Minkowski inequalities for p, q <1 | |
505 | 8 | |a 2. Integrals of complex-valued functions3. The expansion of complex-valued functions in orthogonalseries; CHAPTERXI. MEASURE IN THE PLANE AND IN SPACE; 1. Definition and properties; 2. Plane measure and linear measure; CHAPTERXII. MULTIPLE INTEGRALS; 1. Definition and fundamental properties; 2. Multiple integrals and iterated integrals; 3. The double integral on unbounded sets; 4. Applications; CHAPTERXIII. THE STIELTJES INTEGRAL; 1. Definition and existence; 2. Integration by parts and the limit of integrals; 3. Relation between the Stielt j es integral and Lebesgueintegral; Literature | |
520 | |a The Theory of Lebesgue Measure and Integration. | ||
650 | 0 | |a Integrals, Generalized. | |
650 | 6 | |a Int�egrales g�en�eralis�ees. |0 (CaQQLa)201-0005694 | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Integrals, Generalized |2 fast |0 (OCoLC)fst00975523 | |
700 | 1 | |a Mikusi�nski, Jan. | |
776 | 0 | 8 | |i Print version: |a Hartman, Stanis�aw. |t Theory of Lebesgue measure and integration. |b Enl. ed. |d New York, Pergamon Press, [1961] |w (OCoLC)26744809 |
830 | 0 | |a International series of monographs in pure and applied mathematics ; |v 15. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780080095257 |z Texto completo |