Cargando…

Biodegradable polymers for industrial applications /

The vast majority of plastic products are made from petroleum-based synthetic polymers that do not degrade in a landfill or in a compost-like environment. Therefore, the disposal of these products poses a serious environmental problem. An environmentally-conscious alternative is to design/synthesize...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Smith, Ray
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Boca Raton, Fla. : Woodhead ; CRC Press, 2005.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Table of Contents
  • Contributor contact details
  • Part I Classification and development
  • 1 Classification of biodegradable polymers
  • 1.1 Introduction
  • 1.2 Biopolymers from natural origins
  • 1.3 Biopolymers from mineral origins
  • 1.4 Conclusions
  • 1.5 References
  • 2 Polyhydroxyalkanoates
  • 2.1 Introduction
  • 2.2 Mechanical and thermal properties of PHA
  • 2.3 Process development and scale up for microbial PHA production
  • 2.4 Applications of PHA
  • 2.5 Future developments
  • 2.6 References
  • 3 Oxo-biodegradable polyolefins
  • 3.1 Introduction
  • 3.2 Polyolefin peroxidation
  • 3.3 Control of polyolefin lifetimes
  • 3.4 Oxidative degradation after use
  • 3.5 Aerobic biodegradation
  • 3.6 Applications of oxo-biodegradable polyolefins
  • 3.7 Environmental impact
  • 3.8 Future developments
  • 3.9 References
  • 4 New developments in the synthesis of aliphatic polyesters by ring-opening polymerisation
  • 4.1 Introduction
  • 4.2 Synthesis of aliphatic polyesters by ring-opening polymerisation
  • 4.3 Reactive extrusion
  • 4.4 Supercritical carbon dioxide as a medium for the ring-opening polymerisation of lactones and lactides and a processing aid
  • 4.5 Future developments
  • 4.6 Acknowledgements
  • 4.7 Bibliography
  • 5 Biodegradable polyesteramides
  • 5.1 Introduction
  • 5.2 Poly(ester amide)s synthesis
  • 5.3 Polydepsipeptides
  • 5.4 Conclusions and remarks
  • 5.5 Further information
  • 5.6 References
  • 6 Thermoplastic starch biodegradable polymers
  • 6.1 Introduction
  • 6.2 Properties of starch
  • 6.3 Thermoplastic starch and their blends
  • 6.4 Modified thermoplastic starch polymers
  • 6.5 Commercial applications and products for thermoplastic starch polymers
  • 6.6 Thermoplastic starch polymers
  • looking beyond traditional polymer applications
  • 6.7 Future developments
  • 6.8 Further information
  • 6.9 Acknowledgements
  • 6.10 References
  • Part II Materials for production of biodegradable polymers
  • 7 Biodegradable polymers from sugars
  • 7.1 Introduction
  • 7.2 Biodegradable polymers obtained from monosaccharides and disaccharides
  • 7.3 Biodegradable polymers obtained from synthetic polysaccharides
  • 7.4 Biodegradable polymers obtained from natural polysaccharides
  • 7.5 Future developments
  • 'biodegradable' polymers obtained from hemicelluloses
  • 7.6 References
  • 8 Biodegradable polymer composites from natural fibres
  • 8.1 Introduction
  • 8.2 Natural fibres as polymer reinforcement
  • 8.3 Natural fibre-polyhydroxyalkanoate (PHA) composites
  • 8.4 Natural fibre-polylactide (PLA) composites
  • 8.5 Natural fibre-starch composites
  • 8.6 Natural fibre-soy resin composites
  • 8.7 Natural fibres in combination with synthetic biodegradable polymers
  • 8.8 Commercial developments
  • 8.9 Conclusion
  • 8.10 Further information
  • 8.11 References
  • 9 Biodegradable polymers from renewable forest resources
  • 9.1 Lignocellulosic biomass as a renewable and value-added feedstock for biodegradable polymer production
  • 9.2 Cellulose: as a platform substrate for degradable polymer synthesis
  • 9.3 Hemicellulose and its application as a feedstock for biodegradable polymers
  • ti.