Applied iterative methods /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Academic Press,
1981.
|
Colección: | Computer science and applied mathematics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Applied Iterative Methods; Copyright Page; Table of Contents; Preface; Acknowledgments; Notation; Chapter 1. Background on Linear Algebra and Related Topics; 1.1 Introduction; 1.2 Vectors and Matrices; 1.3 Eigenvalues and Eigenvectors; 1.4 Vector and Matrix Norms; 1.5 Partitioned Matrices; 1.6 The Generalized Dirichlet Problem; 1.7 The Model Problem; Chapter 2. Background on Basic Iterative Methods; 2.1 Introduction; 2.2 Convergence and Other Properties; 2.3 Examples of Basic Iterative Methods; 2.4 Comparison of Basic Methods; 2.5 Other Methods; Chapter 3. Polynomial Acceleration
- 7.4 Conjugate Gradient Acceleration7.5 Stopping Procedures; 7.6 Computational Procedures; 7.7 Numerical Results; Chapter 8. Special Methods for Red/Black Partitionings; 8.1 Introduction; 8.2 The RS-SI and RS-CG Methods; 8.3 The CCSI and CCG Procedures; 8.4 Numerical Results; 8.5 Arithmetic and Storage Requirements; 8.6 Combined (Hybrid) Chebyshev and Conjugate Gradient Iterations; 8.7 Proofs; Chapter 9. Adaptive Procedures for the Successive Overrelaxation Method; 9.1 Introduction; 9.2 Consistently Ordered Matrices and Related Matrices; 9.3 The SOR Method
- 9.4 Eigenvector Convergence of the SOR Difference Vector9.5 SOR Adaptive Parameter and Stopping Procedures; 9.6 An Overall Computational Algorithm; 9.7 The SOR Method for Problems with Red/Black Partitionings; 9.8 Numerical Results; 9.9 On the Relative Merits of Certain Partitionings and Certain IterativeProcedures; 9.10 Proofs of Theorems and Discussion of the Strategy Condition (9-5.21); Chapter 10. The Use of Iterative Methods in the Solution of Partial Differential Equations; 10.1 Introduction; 10.2 The Time-Independent Two-Dimensional Problem