Cargando…

Theory of convex structures /

Presented in this monograph is the current state-of-the-art in the theory of convex structures. The notion of convexity covered here is considerably broader than the classic one; specifically, it is not restricted to the context of vector spaces. Classical concepts of order-convex sets (Birkhoff) an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Vel, M. L. J. Van de, 1948-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; New York : North-Holland, 1993.
Colección:North-Holland mathematical library ; v. 50.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn526488924
003 OCoLC
005 20231117032851.0
006 m o d
007 cr cnu---unuuu
008 100223s1993 ne a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d EBLCP  |d IDEBK  |d E7B  |d OCLCQ  |d OPELS  |d OCLCF  |d OCLCQ  |d YDXCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d LEAUB  |d OCLCQ  |d VLY  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 646815451  |a 823842942  |a 823911065  |a 824098951  |a 824154243  |a 992871662  |a 1162399409 
020 |a 9780080933108  |q (electronic bk.) 
020 |a 0080933106  |q (electronic bk.) 
020 |a 1282258494 
020 |a 9781282258495 
020 |a 9786612258497 
020 |a 6612258497 
020 |z 0444815058  |q (acid-free paper) 
020 |z 9780444815057 
035 |a (OCoLC)526488924  |z (OCoLC)646815451  |z (OCoLC)823842942  |z (OCoLC)823911065  |z (OCoLC)824098951  |z (OCoLC)824154243  |z (OCoLC)992871662  |z (OCoLC)1162399409 
050 4 |a QA639.5  |b .V45 1993eb 
072 7 |a MAT  |x 012000  |2 bisacsh 
072 7 |a PBF, PBM, P  |2 bicssc 
082 0 4 |a 516/.08  |2 22 
100 1 |a Vel, M. L. J. Van de,  |d 1948- 
245 1 0 |a Theory of convex structures /  |c M.L.J. van de Vel. 
260 |a Amsterdam ;  |a New York :  |b North-Holland,  |c 1993. 
300 |a 1 online resource (xv, 540 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a North-Holland mathematical library ;  |v v. 50 
504 |a Includes bibliographical references (pages 507-528) and index. 
588 0 |a Print version record. 
520 |a Presented in this monograph is the current state-of-the-art in the theory of convex structures. The notion of convexity covered here is considerably broader than the classic one; specifically, it is not restricted to the context of vector spaces. Classical concepts of order-convex sets (Birkhoff) and of geodesically convex sets (Menger) are directly inspired by intuition; they go back to the first half of this century. An axiomatic approach started to develop in the early Fifties. The author became attracted to it in the mid-Seventies, resulting in the present volume, in which graphs appear side-by-side with Banach spaces, classical geometry with matroids, and ordered sets with metric spaces. A wide variety of results has been included (ranging for instance from the area of partition calculus to that of continuous selection). The tools involved are borrowed from areas ranging from discrete mathematics to infinite-dimensional topology. Although addressed primarily to the researcher, parts of this monograph can be used as a basis for a well-balanced, one-semester graduate course. 
505 0 |a Front Cover; Theory of Convex Structures; Copyright Page; Introduction; Table of Contents; List of frequent Symbols; Chapter I Abstract Convex Structures; 1. Basic Concepts; 2. The Hull Operator; 3. Half-spaces and Separation; 4. Interval Spaces; 5. Base-point Orders; 6. Modular Spaces; 7. Bryant-Webster Spaces; Chapter II Convex Invariants; 1. Classical Convex Invariants; 2. Invariants and Product Spaces; 3. Invariants in other Constructions; 4. Infinite Combinatorics; 5. Tverberg Numbers; Chapter III Topological Convex Structures; 1. Topology and Convexity on the same Set 
505 8 |a 2. Continuity of the Hull Operator3. Uniform Convex Structures; 4. Top-convex Separation; 5. Intrinsic Topology; Chapter IV Miscellaneous; 1. Embedding Bryant-Webster Spaces into Vector Spaces; 2. Extremality, Pseudo-boundary and Pseudo-interior; 3. Continuous Selection; 4. Dimension Theory; 5. Dimension and Convex Invariants; 6. Fixed Points; Bibliography; Index of Terms 
546 |a English. 
650 0 |a Convex domains. 
650 6 |a Alg�ebres convexes.  |0 (CaQQLa)201-0001182 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Convex domains  |2 fast  |0 (OCoLC)fst00877259 
650 7 |a Ensembles convexes.  |2 ram 
653 0 |a Geometry 
776 0 8 |i Print version:  |a Vel, M.L.J. Van de, 1948-  |t Theory of convex structures.  |d Amsterdam ; New York : North-Holland, 1993  |z 9780444815057  |w (DLC) 93008207  |w (OCoLC)28113277 
830 0 |a North-Holland mathematical library ;  |v v. 50. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444815057  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/09246509/50  |z Texto completo