Lie theory and special functions /
Lie theory and special functions.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Academic Press,
1968.
|
Colección: | Mathematics in science and engineering ;
v. 43. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn500927042 | ||
003 | OCoLC | ||
005 | 20231117015253.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 100119s1968 nyu ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d EBLCP |d IDEBK |d E7B |d OCLCQ |d OCLCF |d UKDOC |d NLGGC |d OCLCQ |d OPELS |d DEBBG |d YDXCP |d OCLCQ |d DEBSZ |d AGLDB |d OCLCQ |d MERUC |d VTS |d OCLCQ |d STF |d LEAUB |d M8D |d OCLCQ |d INARC |d AJS |d OCLCO |d OCLCQ |d OCL | ||
066 | |c (S | ||
019 | |a 316568671 |a 646827704 |a 823843556 |a 823912267 |a 824099329 |a 824154747 |a 907196084 |a 935268516 | ||
020 | |a 9780080955513 |q (electronic bk.) | ||
020 | |a 0080955517 |q (electronic bk.) | ||
020 | |a 0124974503 | ||
020 | |a 9780124974500 | ||
020 | |a 1282289691 | ||
020 | |a 9781282289697 | ||
020 | |z 9780124974500 | ||
020 | |z 9781856177894 | ||
035 | |a (OCoLC)500927042 |z (OCoLC)316568671 |z (OCoLC)646827704 |z (OCoLC)823843556 |z (OCoLC)823912267 |z (OCoLC)824099329 |z (OCoLC)824154747 |z (OCoLC)907196084 |z (OCoLC)935268516 | ||
050 | 4 | |a QA387 |b .M55 1968eb | |
072 | 7 | |a MAT |x 002050 |2 bisacsh | |
082 | 0 | 4 | |a 512/.55 |2 22 |
100 | 1 | |a Miller, Willard. | |
245 | 1 | 0 | |a Lie theory and special functions / |c Willard Miller, Jr. |
260 | |a New York : |b Academic Press, |c 1968. | ||
300 | |a 1 online resource (xv, 338 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics in science and engineering ; |v v. 43 | |
504 | |a Includes bibliographical references (pages 330-335) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a Lie theory and special functions. | ||
505 | 0 | |6 880-01 |a Front Cover; Lie Theory and Special Functions; Copyright Page; Contents; Preface; Chapter 1. R�esum�e of Lie Theory; 1-1 Local Lie Groups; 1-2 Examples; 1-3 Local Transformation Groups; 1-4 Examples of Local Transformation Groups; Chapter 2. Representations and Realizations of Lie Algebras; 2-1 Representations of Lie Algebras; 2-2 Realizations of Representations; 2-3 Representations of L(O3); 2-4 The Angular Momentum Operators; 2-5 The Lie Algebras G(a, b); 2-6 Representations of G(a, b); 2-7 Realizations of G(a, b) in Two Variables; 2-8 Realizations of G(a, b) in One Variable. | |
650 | 0 | |a Lie groups. | |
650 | 0 | |a Functions, Special. | |
650 | 0 | |a Lie algebras. | |
650 | 0 | |a Continuous groups. | |
650 | 6 | |a Alg�ebres de Lie. |0 (CaQQLa)201-0025324 | |
650 | 6 | |a Groupes continus. |0 (CaQQLa)201-0026862 | |
650 | 6 | |a Groupes de Lie. |0 (CaQQLa)201-0025325 | |
650 | 6 | |a Fonctions sp�eciales. |0 (CaQQLa)201-0043460 | |
650 | 7 | |a MATHEMATICS |x Algebra |x Linear. |2 bisacsh | |
650 | 7 | |a Lie algebras. |2 fast |0 (OCoLC)fst00998125 | |
650 | 7 | |a Continuous groups. |2 fast |0 (OCoLC)fst00876776 | |
650 | 7 | |a Functions, Special. |2 fast |0 (OCoLC)fst00936132 | |
650 | 7 | |a Lie groups. |2 fast |0 (OCoLC)fst00998135 | |
650 | 7 | |a Geofisica. |2 larpcal | |
776 | 0 | 8 | |i Print version: |a Miller, Willard. |t Lie theory and special functions. |d New York, Academic Press, 1968 |z 9780124974500 |w (DLC) 68018677 |w (OCoLC)440565 |
830 | 0 | |a Mathematics in science and engineering ; |v v. 43. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780124974500 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/publication?issn=00765392&volume=43 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/bookseries/00765392/43 |z Texto completo |
880 | 8 | |6 505-00/(S |a 4-19 The Representations (λ, I) Q (λ', 4)4-20 The Representations (p) Q (λ, I); 4-21 A Contraction of G(0,1); Chapter 5. Lie Theory and Hypergeometric Functions; 5-1 The Representation Dμ(u, m0); 5-2 The Representation ₁u; 5-3 The Representation ₃u; 5-4 The Representation D(2u); 5-5 The Tensor Product D(2u) D(2u); 5-6 The Tensor Product ₁u Q ₁u; 5-7 Differential Relations for the Matrix Elements; 5-8 Type B Realizations of D(u, m0); 5-9 Type B Realizations of ₁u; 5-10 Weisner's Method for Type B Operators; 5-11 Type A Realizations of D(u, m0); 5-12 Type A Realizations of ₁u. | |
880 | 8 | |6 505-00/(S |a 4-4 Differential Equations for the Matrix Elements4-5 The Representation; 4-6 A Realization of R(ω, mo, μ) by Type D Operators; 4-7 A Realization of ₁ω, μ by Type D' Operators; 4-8 Transformations of Type C' Operators; 4-9 Type C' Realizations of R(ω, m0, μ); 4-10 Type C' Realizations of ₁o,1; 4-11 The Group S4; 4-12 Induced Representations of G4; 4-13 The Hilbert Space F; 4-14 The Unitary Representation (λ, I); 4-15 The Matrix Elements of (λ, I); 4-16 The Unitary Representations (λ, -I); 4-17 The Tensor Products (λ, I) Q (λ', l'); 4-18 The Representations (λ, I) Q (λ', 4'). | |
880 | 8 | |6 505-00/(S |a Chapter 3. Lie Theory and Bessel Functions3-1 The Representations Q(ω, mo); 3-2 Recursion Relations for the Matrix Elements; 3-3 Realizations of Q(ω, mo) in Two Variables; 3-4 Weisner's Method for Bessel Functions; 3-5 The Real Euclidean Group E3; 3-6 Unitary Representations of Lie Groups; 3-7 Induced Representations of E3; 3-8 The Unitary Representations (p) of E3; 3-9 The Matrix Elements of (p); 3-10 The Infinitesimal Operators of (p); Chapter 4. Lie Theory und Confluent Hypergeometric Functions; 4-1 The Representation R(ω, mo, μ); 4-2 The Representation to ω, μ; 4-3 The Representation. | |
880 | 8 | |6 505-01/(S |a 5-13 Type A Realizations of ₃u5-14 Type A Realizations of D(2u); 5-15 Weisner's Method for Type A Operators; 5-16 The Group SU(2); 5-17 The Group G3; 5-18 Unitary Representations of G3; 5-19 Contractions of g(1, 0); Chapter 6. Special Functions Related to the Euclidean Group in 3-Space; 6-1 Representations of g6; 6-2 Type E Operators; 6-3 Type F Operators; 6-4 The Euclidean Group E6; 6-5 The Matrix Elements of (ω, s); Chapter 7. The Factorization Method; 7-1 Recurrence Relations; 7-2 The Factorization Types; Chapter 8. Generulized Lie Derivatives; 8-1 Generalized Derivations. |