Cargando…

Lie theory and special functions /

Lie theory and special functions.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Miller, Willard
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Academic Press, 1968.
Colección:Mathematics in science and engineering ; v. 43.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn500927042
003 OCoLC
005 20231117015253.0
006 m o d
007 cr cnu---unuuu
008 100119s1968 nyu ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d EBLCP  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d UKDOC  |d NLGGC  |d OCLCQ  |d OPELS  |d DEBBG  |d YDXCP  |d OCLCQ  |d DEBSZ  |d AGLDB  |d OCLCQ  |d MERUC  |d VTS  |d OCLCQ  |d STF  |d LEAUB  |d M8D  |d OCLCQ  |d INARC  |d AJS  |d OCLCO  |d OCLCQ  |d OCL 
066 |c (S 
019 |a 316568671  |a 646827704  |a 823843556  |a 823912267  |a 824099329  |a 824154747  |a 907196084  |a 935268516 
020 |a 9780080955513  |q (electronic bk.) 
020 |a 0080955517  |q (electronic bk.) 
020 |a 0124974503 
020 |a 9780124974500 
020 |a 1282289691 
020 |a 9781282289697 
020 |z 9780124974500 
020 |z 9781856177894 
035 |a (OCoLC)500927042  |z (OCoLC)316568671  |z (OCoLC)646827704  |z (OCoLC)823843556  |z (OCoLC)823912267  |z (OCoLC)824099329  |z (OCoLC)824154747  |z (OCoLC)907196084  |z (OCoLC)935268516 
050 4 |a QA387  |b .M55 1968eb 
072 7 |a MAT  |x 002050  |2 bisacsh 
082 0 4 |a 512/.55  |2 22 
100 1 |a Miller, Willard. 
245 1 0 |a Lie theory and special functions /  |c Willard Miller, Jr. 
260 |a New York :  |b Academic Press,  |c 1968. 
300 |a 1 online resource (xv, 338 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics in science and engineering ;  |v v. 43 
504 |a Includes bibliographical references (pages 330-335) and index. 
588 0 |a Print version record. 
520 |a Lie theory and special functions. 
505 0 |6 880-01  |a Front Cover; Lie Theory and Special Functions; Copyright Page; Contents; Preface; Chapter 1. R�esum�e of Lie Theory; 1-1 Local Lie Groups; 1-2 Examples; 1-3 Local Transformation Groups; 1-4 Examples of Local Transformation Groups; Chapter 2. Representations and Realizations of Lie Algebras; 2-1 Representations of Lie Algebras; 2-2 Realizations of Representations; 2-3 Representations of L(O3); 2-4 The Angular Momentum Operators; 2-5 The Lie Algebras G(a, b); 2-6 Representations of G(a, b); 2-7 Realizations of G(a, b) in Two Variables; 2-8 Realizations of G(a, b) in One Variable. 
650 0 |a Lie groups. 
650 0 |a Functions, Special. 
650 0 |a Lie algebras. 
650 0 |a Continuous groups. 
650 6 |a Alg�ebres de Lie.  |0 (CaQQLa)201-0025324 
650 6 |a Groupes continus.  |0 (CaQQLa)201-0026862 
650 6 |a Groupes de Lie.  |0 (CaQQLa)201-0025325 
650 6 |a Fonctions sp�eciales.  |0 (CaQQLa)201-0043460 
650 7 |a MATHEMATICS  |x Algebra  |x Linear.  |2 bisacsh 
650 7 |a Lie algebras.  |2 fast  |0 (OCoLC)fst00998125 
650 7 |a Continuous groups.  |2 fast  |0 (OCoLC)fst00876776 
650 7 |a Functions, Special.  |2 fast  |0 (OCoLC)fst00936132 
650 7 |a Lie groups.  |2 fast  |0 (OCoLC)fst00998135 
650 7 |a Geofisica.  |2 larpcal 
776 0 8 |i Print version:  |a Miller, Willard.  |t Lie theory and special functions.  |d New York, Academic Press, 1968  |z 9780124974500  |w (DLC) 68018677  |w (OCoLC)440565 
830 0 |a Mathematics in science and engineering ;  |v v. 43. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780124974500  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=00765392&volume=43  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/00765392/43  |z Texto completo 
880 8 |6 505-00/(S  |a 4-19 The Representations (λ, I) Q (λ', 4)4-20 The Representations (p) Q (λ, I); 4-21 A Contraction of G(0,1); Chapter 5. Lie Theory and Hypergeometric Functions; 5-1 The Representation Dμ(u, m0); 5-2 The Representation ₁u; 5-3 The Representation ₃u; 5-4 The Representation D(2u); 5-5 The Tensor Product D(2u) D(2u); 5-6 The Tensor Product ₁u Q ₁u; 5-7 Differential Relations for the Matrix Elements; 5-8 Type B Realizations of D(u, m0); 5-9 Type B Realizations of ₁u; 5-10 Weisner's Method for Type B Operators; 5-11 Type A Realizations of D(u, m0); 5-12 Type A Realizations of ₁u. 
880 8 |6 505-00/(S  |a 4-4 Differential Equations for the Matrix Elements4-5 The Representation; 4-6 A Realization of R(ω, mo, μ) by Type D Operators; 4-7 A Realization of ₁ω, μ by Type D' Operators; 4-8 Transformations of Type C' Operators; 4-9 Type C' Realizations of R(ω, m0, μ); 4-10 Type C' Realizations of ₁o,1; 4-11 The Group S4; 4-12 Induced Representations of G4; 4-13 The Hilbert Space F; 4-14 The Unitary Representation (λ, I); 4-15 The Matrix Elements of (λ, I); 4-16 The Unitary Representations (λ, -I); 4-17 The Tensor Products (λ, I) Q (λ', l'); 4-18 The Representations (λ, I) Q (λ', 4'). 
880 8 |6 505-00/(S  |a Chapter 3. Lie Theory and Bessel Functions3-1 The Representations Q(ω, mo); 3-2 Recursion Relations for the Matrix Elements; 3-3 Realizations of Q(ω, mo) in Two Variables; 3-4 Weisner's Method for Bessel Functions; 3-5 The Real Euclidean Group E3; 3-6 Unitary Representations of Lie Groups; 3-7 Induced Representations of E3; 3-8 The Unitary Representations (p) of E3; 3-9 The Matrix Elements of (p); 3-10 The Infinitesimal Operators of (p); Chapter 4. Lie Theory und Confluent Hypergeometric Functions; 4-1 The Representation R(ω, mo, μ); 4-2 The Representation to ω, μ; 4-3 The Representation. 
880 8 |6 505-01/(S  |a 5-13 Type A Realizations of ₃u5-14 Type A Realizations of D(2u); 5-15 Weisner's Method for Type A Operators; 5-16 The Group SU(2); 5-17 The Group G3; 5-18 Unitary Representations of G3; 5-19 Contractions of g(1, 0); Chapter 6. Special Functions Related to the Euclidean Group in 3-Space; 6-1 Representations of g6; 6-2 Type E Operators; 6-3 Type F Operators; 6-4 The Euclidean Group E6; 6-5 The Matrix Elements of (ω, s); Chapter 7. The Factorization Method; 7-1 Recurrence Relations; 7-2 The Factorization Types; Chapter 8. Generulized Lie Derivatives; 8-1 Generalized Derivations.