Cargando…

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn428099620
003 OCoLC
005 20231117032822.0
006 m o d
007 cr cn|||||||||
008 090728s1974 ne ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OCLCQ  |d E7B  |d N$T  |d OCLCQ  |d OCLCE  |d OPELS  |d OCLCF  |d YDXCP  |d OCLCQ  |d COO  |d OCLCQ  |d DEBSZ  |d AUD  |d VLY  |d LUN  |d S2H  |d OCLCO  |d OCLCQ  |d UKQUB  |d OCLCO  |d COM  |d OCLCO  |d OCL  |d OCLCQ  |d COA  |d OCLCO 
019 |a 649907613  |a 820518947  |a 820714195  |a 1043399725  |a 1086562828  |a 1162499964  |a 1233305898  |a 1340051947 
020 |a 9780080954868  |q (electronic bk.) 
020 |a 0080954863  |q (electronic bk.) 
020 |a 1283525607 
020 |a 9781283525602 
020 |a 9786613838056 
020 |a 6613838055 
020 |z 9780444105356 
020 |z 0444105352 
020 |z 0720422000 
020 |z 9780720422009 
020 |z 0720422795 
020 |z 9780720422795 
024 8 |a (WaSeSS)ssj0000487337 
035 |a (OCoLC)428099620  |z (OCoLC)649907613  |z (OCoLC)820518947  |z (OCoLC)820714195  |z (OCoLC)1043399725  |z (OCoLC)1086562828  |z (OCoLC)1162499964  |z (OCoLC)1233305898  |z (OCoLC)1340051947 
042 |a dlr 
050 4 |a QA248  |b .D73 1974 
072 7 |a MAT  |x 022000  |2 bisacsh 
082 0 4 |a 512/.72  |2 22 
084 |a 31.10  |2 bcl 
084 |a SK 130  |2 rvk 
084 |a SK 150  |2 rvk 
100 1 |a Drake, F. R.  |q (Frank Robert) 
245 1 0 |a Set theory :  |b an introduction to large cardinals /  |c Frank R. Drake. 
260 |a Amsterdam :  |b North-Holland Pub. Co. ;  |a New York :  |b American Elsevier Pub. Co.,  |c 1974. 
300 |a 1 online resource (xii, 351 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rdaft  |0 http://rdaregistry.info/termList/fileType/1002. 
490 1 |a Studies in logic and the foundations of mathematics ;  |v v. 76 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2011.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2011  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
505 0 |a Front Cover; Set Theory: An Introduction to Large Cardinals; Copyright Page; Contents; Preface; Chapter 1. Introduction: Sets and Languages; 1. What are sets?-The cumulative type structure; 2. The first-order language of set theory; 3. The Zermelo-Fraenkel axioms; 4. A note on paradoxes; 5. More general languages; 6. The hereditarily finite sets-an example; Notes to Chapter 1; Chapter 2. Thedevelopment of ZFC; 1. Elementary definitions; 2. Ordinals; 3. Transfinite induction; 4. Cardinals: introduction; 5. Cardinal arithmetic; 6. The axiom of choice 
505 8 |a 7. The generalized continuum hypothesis inaccessible cardinals; 8. Ramsey's theorem; Notes to Chapter 2; Chapter 3. The L�evy Hierarchy And The Reflection Principle; 1. Transitive �-structures; 2. L�evy's hierarchy; 3. Delta and transfinite induction; 4. Absoluteness; 5. Delta-definability of the satisfaction relation; 6. The reflection principle of ZF; 7. Cardinality and Sigma-formulas; Notes to Chapter 3; Chapter 4. Inaccessible and Mahlocardinals; 1. Properties of Va; 2. Normal functions; 3. Mahlo cardinals; 4. Reflection principles for Mahlo cardinals; Notes to Chapter 4 
505 8 |a Chapter 5. The Constructible Universe1. Constructible sets; 2. G�odel's theorems on L: AC and GCH; 3. Constructible orders; 4. On reducing proofs to ZFC; 5. The minimal model of ZF; 6. Relative constructibility; 7. The analytical hierarchy and constructible sets; 8. Ordinal definable sets; Notes to Chapter 5; Chapter 6. Measurable Cardinals; 1. Measures: classical properties; 2. The ultrapower construction for measurable cardinals; 3. Normal measures; 4. Measurable cardinals and constructible sets; 5. Measurable cardinals and the GCH; Notes to Chapter 6 
505 8 |a 1. pai nm and Sigma nm-indescribables2. Enforceable classes; 3. Indescribability of measurable cardinals; 4. v-indescribable cardinals; Notes to Chapter 9; Chapter 10. Infinitarylanguages and Large Cardinals; 1. The languages La�; 2. Weakly compact cardinals; 3. Strongly compact cardinals; 4. Summary of large cardinals; Notes to Chapter 10; Bibliography; Index; List of Symbols and Abbreviations Used and Page Where Introduced 
520 |a Provability, Computability and Reflection. 
546 |a English. 
650 0 |a Set theory. 
650 0 |a Cardinal numbers. 
650 0 |a Number theory. 
650 6 |a Th�eorie des ensembles.  |0 (CaQQLa)201-0001167 
650 6 |a Th�eorie des nombres.  |0 (CaQQLa)201-0005588 
650 6 |a Nombres cardinaux.  |0 (CaQQLa)201-0058540 
650 7 |a MATHEMATICS  |x Number Theory.  |2 bisacsh 
650 7 |a Number theory  |2 fast  |0 (OCoLC)fst01041214 
650 7 |a Cardinal numbers  |2 fast  |0 (OCoLC)fst00847088 
650 7 |a Set theory  |2 fast  |0 (OCoLC)fst01113587 
650 7 |a Kardinalzahl  |2 gnd  |0 (DE-588)4163318-0 
650 7 |a Mengenlehre  |2 gnd  |0 (DE-588)4074715-3 
650 7 |a Zahlentheorie  |2 gnd  |0 (DE-588)4067277-3 
650 1 7 |a Verzamelingen (wiskunde)  |2 gtt 
650 1 7 |a Kardinaalgetallen.  |2 gtt 
650 7 |a Ensembles, Th�eorie des.  |2 ram 
655 7 |a Large cardinals.  |2 swd 
776 0 8 |i Print version:  |a Drake, F.R. (Frank Robert).  |t Set theory.  |d Amsterdam : North-Holland Pub. Co. ; New York : American Elsevier Pub. Co., 1974  |z 0444105352  |z 9780444105356  |w (DLC) 75305311  |w (OCoLC)1123102 
830 0 |a Studies in logic and the foundations of mathematics ;  |v v. 76. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444105356  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/0049237X/76  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=0049237X&volume=76  |z Texto completo