Cargando…

Differential and integral inequalities : theory and applications. Volume I, Ordinary differential equations /

Differential and integral inequalities; theory and applications PART A: Ordinary differential equations.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Lakshmikantham, V., 1926-2012, Leela, S.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Academic Press, 1969.
Colección:Mathematics in science and engineering ; v. 55.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn428095231
003 OCoLC
005 20231117032813.0
006 m o d
007 cr cnu---unuuu
008 090728s1969 nyu ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d N$T  |d EBLCP  |d IDEBK  |d OCLCQ  |d MHW  |d OCLCQ  |d OPELS  |d OCLCF  |d UKDOC  |d OCLCQ  |d NLGGC  |d UA@  |d YDXCP  |d OCLCQ  |d DEBSZ  |d AGLDB  |d OCLCQ  |d VTS  |d S9I  |d STF  |d LEAUB  |d M8D  |d OCLCQ  |d OCLCA  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 907195867  |a 935268404 
020 |a 9780080955636  |q (electronic bk.) 
020 |a 0080955630  |q (electronic bk.) 
035 |a (OCoLC)428095231  |z (OCoLC)907195867  |z (OCoLC)935268404 
050 4 |a QA295  |b .D54eb vol. 1 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.26  |2 22 
245 0 0 |a Differential and integral inequalities :  |b theory and applications.  |n Volume I,  |p Ordinary differential equations /  |c edited by V. Lakshmikantham and S. Leela. 
246 3 0 |a Ordinary differential equations 
260 |a New York :  |b Academic Press,  |c 1969. 
300 |a 1 online resource (ix, 390 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Mathematics in science and engineering ;  |v v. 55 
504 |a Includes bibliographical references (pages 355-384) and indexes. 
588 0 |a Print version record. 
505 0 |a Front Cover; Differential and Integral Inequalities: Theory and Applications; Copyright Page; Contents; Preface; PART 1: ORDINARY DIFFERENTIAL EQUATIONS; Chapter 1.; 1.0. Introduction; 1.1. Existence and Continuation of Solutions; 1.2. Scalar Differential Inequalities; 1.3. Maximal and Minimal Solutions; 1.4. Comparison Theorems; 1.5. Finite Systems of Differential Inequalities; 1.6. Minimax Solutions; 1.7. Further Comparison Theorems; 1.8. Infinite Systems of Differential Inequalities; 1.9. Integral Inequalities Reducible to Differential Inequalities. 
505 8 |a 1.10. Differential Inequalities in the Sense of Caratheodory1.11. Notes; Chapter 2.; 2.0. Introduction; 2.1. Global Existence; 2.2. Uniqueness; 2.3. Convergence of Successive Approximations; 2.4. Chaplygin's Method; 2.5. Dependence on Initial Conditions and Parameters; 2.6. Variation of Constants; 2.7. Upper and Lower Bounds; 2.8. Componentwise Bounds; 2.9. Asymptotic Equilibrium; 2.10. Asymptotic Equivalence; 2.11. A Topological Principle; 2.12. Applications of Topological Principle; 2.13. Stability Criteria; 2.14. Asymptotic Behavior; 2.15 Periodic and Almost Periodic Systems; 2.16. Notes. 
505 8 |a Chapter 3.3.0. Introduction; 3.1. Basic Comparison Theorems; 3.2. Definitions; 3.3. Stability; 3.4. Asymptotic Stability; 3.5. Stability of Perturbed Systems; 3.6. Converse Theorems; 3.7. Stability by the First Approximation; 3.8. Total Stability; 3.9. Integral Stability; 3.10. L""-Stability; 3.11. Partial Stability; 3.12. Stability of Differential Inequalities; 3.13. Boundcdness and Lagrange Stability; 3.14. Eventual Stability; 3.15. Asymptotic Behavior; 3.16. Relative Stability; 3.17. Stability with Respect to a Manifold; 3.18. Almost Periodic Systems; 3.19. Uniqueness and Estimates. 
505 8 |a 3.20. Continuous Dependence and the Method of Averaging3.21. Notes; Chapter 4.; 4.0. Introduction; 4.1. Main Comparison Theorem; 4.2. Asymptotic Stability; 4.3. Instability; 4.4. Conditional Stability and Boundedness; 4.5. Converse Theorems; 4.6. Stability in Tube-like Domain; 4.7. Stability of Asymptotically Self-Invariant Sets; 4.8. Stability of Conditionally Invariant Sets; 4.9. Existence and Stability of Stationary Points; 4.10. Notes; PART 2: VOLTERRA INTEGRAL EQUATIONS; Chapter 5.; 5.0. Introduction; 5.1. Integral Inequalities; 5.2. Local and Global Existence; 5.3. Comparison Theorems. 
505 8 |a 5.4. Approximate Solutions, Bounds, and Uniqueness5.5. Asymptotic Behavior; 5.6. Perturbed Integral Equations; 5.7. Admissibility and Asymptotic Behavior; 5.8. Integrodifferential Inequalities; 5.9. Notes; Bibliography; Author Index; Subject Index. 
520 |a Differential and integral inequalities; theory and applications PART A: Ordinary differential equations. 
650 0 |a Inequalities (Mathematics) 
650 6 |a In�egalit�es (Math�ematiques)  |0 (CaQQLa)201-0028036 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Inequalities (Mathematics)  |2 fast  |0 (OCoLC)fst00972020 
700 1 |a Lakshmikantham, V.,  |d 1926-2012. 
700 1 |a Leela, S. 
776 0 8 |i Print version:  |t Differential and integral inequalities.  |d New York : Academic Press, 1969  |z 9780124341012  |w (OCoLC)181657079 
830 0 |a Mathematics in science and engineering ;  |v v. 55. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780124341012  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/00765392/55/part/P1  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/issue/42415-1969-999449999.7998-744097  |z Texto completo