Combinatorial design theory /
Combinatorial design theory is a vibrant area of combinatorics, connecting graph theory, number theory, geometry, and algebra with applications in experimental design, coding theory, and numerous applications in computer science. This volume is a collection of forty-one state-of-the-art research art...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; New York : New York, N.Y., U.S.A. :
North-Holland ; Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.,
1987.
|
Colección: | North-Holland mathematics studies ;
149. Annals of discrete mathematics ; 34. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn316570148 | ||
003 | OCoLC | ||
005 | 20231117015256.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 090320s1987 ne ob 010 0 eng d | ||
010 | |z 87022311 | ||
040 | |a OPELS |b eng |e pn |c OPELS |d OPELS |d OCLCQ |d DEBBG |d OCLCF |d OCLCO |d N$T |d IDEBK |d E7B |d MERUC |d UA@ |d YDXCP |d OCLCQ |d COO |d OCLCQ |d DEBSZ |d LEAUB |d INARC |d OCLCO |d VLY |d LUN |d S2H |d OCLCO |d OCLCQ |d OCLCO |d COM |d OCLCO |d OCL |d OCLCQ |d SFB |d OCLCO | ||
019 | |a 312458825 |a 646774743 |a 1162237573 |a 1397695611 | ||
020 | |a 9780444703286 | ||
020 | |a 0444703284 | ||
020 | |a 9780080872605 |q (electronic bk.) | ||
020 | |a 0080872603 |q (electronic bk.) | ||
020 | |a 1281793116 | ||
020 | |a 9781281793119 | ||
020 | |a 9786611793111 | ||
020 | |a 6611793119 | ||
035 | |a (OCoLC)316570148 |z (OCoLC)312458825 |z (OCoLC)646774743 |z (OCoLC)1162237573 |z (OCoLC)1397695611 | ||
050 | 4 | |a QA166.25 |b .C652 1987eb | |
072 | 7 | |a MAT |x 036000 |2 bisacsh | |
082 | 0 | 4 | |a 511/.6 |2 22 |
084 | |a *00Bxx |2 msc | ||
084 | |a 05-06 |2 msc | ||
084 | |a 05Bxx |2 msc | ||
084 | |a SK 890 |2 rvk | ||
084 | |a SK 170 |2 rvk | ||
084 | |a MAT 052f |2 stub | ||
245 | 0 | 0 | |a Combinatorial design theory / |c edited by Charles J. Colbourn, Rudolf Mathon. |
260 | |a Amsterdam ; |a New York : |b North-Holland ; |a New York, N.Y., U.S.A. : |b Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., |c 1987. | ||
300 | |a 1 online resource (xii, 470 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a North-Holland mathematics studies ; |v 149 | |
490 | 1 | |a Annals of discrete mathematics ; |v 34 | |
520 | |a Combinatorial design theory is a vibrant area of combinatorics, connecting graph theory, number theory, geometry, and algebra with applications in experimental design, coding theory, and numerous applications in computer science. This volume is a collection of forty-one state-of-the-art research articles spanning all of combinatorial design theory. The articles develop new methods for the construction and analysis of designs and related combinatorial configurations; both new theoretical methods, and new computational tools and results, are presented. In particular, they extend the current state of knowledge on Steiner systems, Latin squares, one-factorizations, block designs, graph designs, packings and coverings, and develop recursive and direct constructions. The contributions form an overview of the current diversity of themes in design theory for those peripherally interested, while researchers in the field will find it to be a major collection of research advances. The volume is dedicated to Alex Rosa, who has played a major role in fostering and developing combinatorial design theory. | ||
500 | |a Festschrift for Alex Rosa. | ||
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; Combinatorial Design Theory; Copyright Page; Preface; Acknowledgements; Contents; Chapter 1. The Existence of Symmetric Latin Squares with One Prescribed Symbol in Each Row and Column; Chapter 2. A Fast Method for Sequencing Low Order Non-Abelian Groups; Chapter 3. Pairwise Balanced Designs with Prime Power Block Sizes Exceeding 7; Chapter 4. Conjugate Orthogonal Latin Squares with Equal-Sized Holes; Chapter 5. On Regular Packings and Coverings; Chapter 6. An Inequality on the Parameters of Distance Regular Graphs and the Uniqueness of a Graph Related to M23. | |
546 | |a English. | ||
600 | 1 | 0 | |a Rosa, Alexander. |
650 | 0 | |a Combinatorial designs and configurations. | |
650 | 6 | |a Configurations et sch�emas combinatoires. |0 (CaQQLa)201-0024154 | |
650 | 7 | |a MATHEMATICS |x Combinatorics. |2 bisacsh | |
600 | 1 | 7 | |a Rosa, Alexander |2 fast |0 (OCoLC)fst00086518 |
650 | 7 | |a Combinatorial designs and configurations |2 fast |0 (OCoLC)fst00868967 | |
650 | 7 | |a Kombinatorische Designtheorie |2 gnd |0 (DE-588)4164747-6 | |
650 | 7 | |a Configurations et schemas combinatoires. |2 ram | |
655 | 7 | |a Festschriften |2 fast |0 (OCoLC)fst01941036 | |
655 | 7 | |a Festschriften. |2 lcgft | |
700 | 1 | |a Colbourn, C. J. |q (Charles J.), |d 1953- | |
700 | 1 | |a Mathon, R. A. | |
700 | 1 | |a Rosa, Alexander. | |
776 | 0 | 8 | |i Print version: |t Combinatorial design theory. |d Amsterdam ; New York : North-Holland ; New York, N.Y., U.S.A. : Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., 1987 |z 0444703284 |z 9780444703286 |w (DLC) 87022311 |w (OCoLC)16646936 |
830 | 0 | |a North-Holland mathematics studies ; |v 149. | |
830 | 0 | |a Annals of discrete mathematics ; |v 34. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780444703286 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/publication?issn=03040208&volume=149 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/bookseries/03040208/149 |z Texto completo |