Cargando…

Dynamics /

This volume of the Handbook of Surface Science covers all aspects of the dynamics of surface processes. Two dozen world leading experts in this field address the subjects of energy exchange in gas atoms, surface collisions, the rules governing dissociative adsorption on surfaces, the formation of na...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Hasselbrink, E. (Eckart), Lundqvist, B. I. (Bengt I.)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier Science, 2008.
Colección:Handbook of surface science ; 3.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo
Tabla de Contenidos:
  • Front cover; Dynamics; Copyright page; General Preface; Preface to Volume 3; Contents of Volume 3; Contributors to Volume 3; Interviewing Nobel Prize Winner Gerhard Ertl; Chapter 1. Fundamental Atomic-Scale Issues/Processes Pertinent to Dynamics at Surfaces; 1.1. Introduction; 1.2. General quantum dynamics for surfaces; 1.3. Trajectorizing; 1.4. Diabatic transitions; 1.5. Anderson orthogonality, Friedel, phase shifts and friction; 1.6. Electron-resonance-enhanced dynamics; 1.7. Final thoughts; References; Chapter 2. Basic Mechanisms in Atom-Surface Interactions; 2.1. Introduction.
  • 2.2. Need for simple models2.3. Interaction potentials; 2.4. Limiting cases in the scattering dynamics; 2.5. Limiting cases in adsorption dynamics; 2.6. Conclusion; References; Chapter 3. Energy Transfer to Phonons in Atom and Molecule Collisions with Surfaces; 3.1. Introduction; 3.2. Basic model for multiphonon excitation; 3.3. Experimentally measured quantities; 3.4. Surface scattering theory; 3.5. Comparisons with experiment; 3.6. Conclusions; Acknowledgement; References; Chapter 4. Physisorption Dynamics at Metal Surfaces; 4.1. Introduction; 4.2. The physisorption interaction.
  • 4.3. Sticking, trapping and energy transfer4.4. Thermal desorption; 4.5. Photodesorption of physisorbed species; 4.6. Concluding remarks; Acknowledgements; References; Chapter 5. Intra-molecular Energy Flow in Gas-Surface Collisions; 5.1. Introduction; 5.2. Probing the potential energy surface; 5.3. Quantum or classical descriptions of the dynamics; 5.4. Changing direction
  • diffraction, physisorption and steering; 5.5. Rotational excitation; 5.6. Changing the vibrational state of the molecule; 5.7. Dissociation; 5.8. Substrate excitations and intra-molecular energy flow; 5.9. Conclusions.
  • AcknowledgementsReferences; Chapter 6. Inelastic Scattering of Heavy Molecules from Surfaces; 6.1. Introduction; 6.2. Experimental techniques; 6.3. Diatomic molecules; 6.4. Polyatomics; 6.5. Conclusion and outlook; Acknowledgements; References; Chapter 7. Reaction Dynamics and Kinetics: TST, Non-equilibrium and Non-adiabatic Effects, Lateral Interactions, etc.; 7.1. Introduction; 7.2. Transition-state theory; 7.3. Tunneling; 7.4. Non-equilibrium effects; 7.5. Non-adiabatic effects; 7.6. Lateral interactions; 7.7. Surface heterogeneity; 7.8. Reaction kinetics on nm-sized catalyst particles.
  • 7.9. ConclusionAcknowledgements; References; Chapter 8. Understanding Heterogeneous Catalysis from the Fundamentals; 8.1. Introduction; 8.2. Surface-science heritage of understanding; 8.3. Variations in catalytic rates
  • volcano relations; 8.4. Optimization and design of catalysts through modeling; 8.5. Some catalytic reactions from the fundamentals; 8.6. Conclusions and outlook; References; Chapter 9. Non-linear Dynamics in Catalytic Reactions; 9.1. Introduction; 9.2. Observation of rate oscillations; 9.3. Theoretical background; 9.4. Oscillation mechanisms; 9.5. Chemical wave patterns.