Methods of matrix algebra /
Methods of matrix algebra.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Academic Press,
1965.
|
Colección: | Mathematics in science and engineering ;
v. 16. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn316568667 | ||
003 | OCoLC | ||
005 | 20231117015253.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090320s1965 nyu ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d N$T |d OCLCQ |d EBLCP |d IDEBK |d OCLCQ |d OPELS |d OCLCQ |d OCLCE |d OCLCO |d E7B |d OCLCF |d DEBBG |d OCLCQ |d NLGGC |d OCLCQ |d DEBSZ |d AGLDB |d OCLCQ |d VTS |d STF |d LEAUB |d M8D |d OCLCQ |d REC |d OCLCO |d SGP |d OCLCQ |d OCLCO | ||
019 | |a 297868702 |a 558937115 |a 646827832 |a 823843568 |a 823912300 |a 824099340 |a 824154760 |a 978693815 |a 978835531 |a 987669988 |a 1047912054 |a 1086440265 |a 1103290370 |a 1119009824 |a 1157102332 |a 1157969068 |a 1158000651 |a 1178676441 |a 1183911374 |a 1249433525 |a 1257383869 |a 1264251796 |a 1296759644 | ||
020 | |a 9780080955223 |q (electronic bk.) | ||
020 | |a 0080955223 |q (electronic bk.) | ||
020 | |a 1282289810 | ||
020 | |a 9781282289819 | ||
020 | |z 9780125488501 | ||
020 | |z 0125488505 | ||
035 | |a (OCoLC)316568667 |z (OCoLC)297868702 |z (OCoLC)558937115 |z (OCoLC)646827832 |z (OCoLC)823843568 |z (OCoLC)823912300 |z (OCoLC)824099340 |z (OCoLC)824154760 |z (OCoLC)978693815 |z (OCoLC)978835531 |z (OCoLC)987669988 |z (OCoLC)1047912054 |z (OCoLC)1086440265 |z (OCoLC)1103290370 |z (OCoLC)1119009824 |z (OCoLC)1157102332 |z (OCoLC)1157969068 |z (OCoLC)1158000651 |z (OCoLC)1178676441 |z (OCoLC)1183911374 |z (OCoLC)1249433525 |z (OCoLC)1257383869 |z (OCoLC)1264251796 |z (OCoLC)1296759644 | ||
042 | |a dlr | ||
050 | 4 | |a QA263 |b .P36 1965eb | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 0 | 4 | |a 512.896 |2 22 |
100 | 1 | |a Pease, Marshall C. |q (Marshall Carleton), |d 1920- | |
245 | 1 | 0 | |a Methods of matrix algebra / |c Marshall C. Pease, III. |
260 | |a New York : |b Academic Press, |c 1965. | ||
300 | |a 1 online resource (xviii, 406 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics in science and engineering ; |v v. 16 | |
504 | |a Includes bibliographical references (pages 396-399) and index. | ||
588 | 0 | |a Print version record. | |
506 | |3 Use copy |f Restrictions unspecified |2 star |5 MiAaHDL | ||
533 | |a Electronic reproduction. |b [Place of publication not identified] : |c HathiTrust Digital Library, |d 2010. |5 MiAaHDL | ||
538 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |u http://purl.oclc.org/DLF/benchrepro0212 |5 MiAaHDL | ||
583 | 1 | |a digitized |c 2010 |h HathiTrust Digital Library |l committed to preserve |2 pda |5 MiAaHDL | |
520 | |a Methods of matrix algebra. | ||
505 | 0 | |a Front Cover; Methods of Matrix Algebra; Copyright Page; Contents; Foreword; Symbols and Conventions; Chapter I. Vectors and Matrices; 1. Vectors; 2. Addition of Vectors and Scalar Multiplication; 3. Linear Vector Spaces; 4. Dimensionality and Bases; 5. Linear Homogeneous Systems-Matrices; 6. Partitioned Matrices; 7. Addition of Matrices and Scalar Multiplication; 8. Multiplication of a Matrix Times a Vector; 9. Matrix Multiplication; 10. An Algebra; 11. Commutativity; 12. Divisors of Zero; 13. A Matrix as a Representation of an Abstract Operator; 14. Other Product Relations | |
505 | 8 | |a 15. The Inverse of a Matrix16. Rank of a Matrix; 17. Gauss's Algorithm; 18. 2-Port Networks; 19. Example; Chapter II. The Inner Product; 1. Unitary Inner Product; 2. Alternative Representation of Unitary Inner Product; 3. General (Proper) Inner Product; 4. Euclidean Inner Product; 5. Skew Axes; 6. Orthogonality; 7. Normalization; 8. Gram-Schmidt Process; 9. The Norm of a Vector; Chapter III. Eigenvalues and Eigenvectors; 1. Basic Concept; 2. Characteristic or Iterative Impedance; 3. Formal Development; 4. Determination of the Eigenvalues; 5. Singularity; 6. Linear Independence | |
505 | 8 | |a 7. Semisimplicity8. Nonsemisimple Matrices; 9. Degeneracy in a Chain; 10. Examples; 11. p-Section of a Filter; 12. Structure of the Characteristic Equation; 13. Rank of a Matrix; 14. The Trace of a Matrix; 15. Reciprocal Vectors; 16. Reciprocal Eigenvectors; 17. Reciprocal Generalized Eigenvectors; 18. Variational Description of the Eigenvectors and Eigenvalues; Chapter IV. Hermitian, Unitary, and Normal Matrices; 1. Adjoint Relation; 2. Rule of Combination; 3. The Basic Types; 4. Decomposition into Hermitian Components; 5. Polar Decomposition; 6. Structure of Normal Matrices | |
505 | 8 | |a 7. The Converse Theorem8. Hermitian Matrices; 9. Unitary Matrices; 10. General (Proper) Inner Product; Chapter V. Change of Basis, Diagonalization, and the Jordan Canonical Form; 1. Change of Basis and Similarity Transformations; 2. Equivalence Transformations; 3. Congruent and Conjunctive Transformations; 4. Example; 5. Gauge Invariance; 6. Invariance of the Eigenvalues under a Change of Basis; 7. Invariance of the Trace; 8. Variation of the Eigenvalues under a Conjunctive Transformation; 9. Diagonalization; 10. Diagonalization of Normal Matrices | |
505 | 8 | |a 11. Conjunctive Transformation of a Hermitian Matrix12. Example; 13. Positive Definite Hermitian Forms; 14. Lagrange's Method; 15. Canonical Form of a Nonsemisimple Matrix; 16. Example; 17. Powers and Polynomials of a Matrix; 18. The Cayley-Hamilton Theorem; 19. The Minimum Polynomiail; 20. Examples; 21. Summary; Chapter VI. Functions of a Matrix; 1. Differential Equations; 2. Reduction of Degree; 3. Series Expansion; 4. Transmission Line; 5. Square Root Function; 6. Unitary Matrices as Exponentials; 7. Eigenvectors; 8. Spectrum of a Matrix; 9. Example; 10. Commutativity | |
650 | 0 | |a Matrices. | |
650 | 6 | |a Matrices. |0 (CaQQLa)201-0024157 | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Matrices |2 fast |0 (OCoLC)fst01012399 | |
776 | 0 | 8 | |i Print version: |a Pease, Marshall C. (Marshall Carleton), 1920- |t Methods of matrix algebra. |d New York : Academic Press, 1965 |z 9780125488501 |w (DLC) 65019017 |w (OCoLC)528210 |
776 | 0 | 8 | |i Online version: |a Pease, Marshall C. (Marshall Carleton), 1920- |t Methods of matrix algebra. |d New York : Academic Press, 1965 |w (OCoLC)1103290370 |
830 | 0 | |a Mathematics in science and engineering ; |v v. 16. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780125488501 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/publication?issn=00765392&volume=16 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/bookseries/00765392/16 |z Texto completo |