Semi-Riemannian geometry : with applications to relativity /
This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Academic Press,
1983.
|
Colección: | Pure and applied mathematics (Academic Press) ;
103. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn316568577 | ||
003 | OCoLC | ||
005 | 20231117015251.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 090320s1983 nyu ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d OCLCQ |d OPELS |d OCLCQ |d OCLCF |d OCLCO |d DEBBG |d UIU |d N$T |d IDEBK |d E7B |d YDXCP |d MERUC |d DEBSZ |d OCLCQ |d COO |d OCLCQ |d NLE |d UKMGB |d TKN |d LEAUB |d S2H |d OCLCO |d OCLCQ |d OCLCO | ||
015 | |a GBB6H6640 |2 bnb | ||
016 | 7 | |a 017608388 |2 Uk | |
019 | |a 301289371 |a 646773909 | ||
020 | |a 9780080570570 |q (electronic bk.) | ||
020 | |a 0080570577 |q (electronic bk.) | ||
020 | |z 9780125267403 | ||
020 | |z 0125267401 | ||
035 | |a (OCoLC)316568577 |z (OCoLC)301289371 |z (OCoLC)646773909 | ||
050 | 4 | |a QA3 |b .P8 vol. 103eb | |
050 | 4 | |a QA649 |b .O64 1983eb | |
072 | 7 | |a MAT |x 023000 |2 bisacsh | |
072 | 7 | |a MAT |x 026000 |2 bisacsh | |
072 | 7 | |a MAT |x 039000 |2 bisacsh | |
082 | 0 | 4 | |a 516.3/73 |2 22 |
100 | 1 | |a O'Neill, Barrett. | |
245 | 1 | 0 | |a Semi-Riemannian geometry : |b with applications to relativity / |c Barrett O'Neill. |
260 | |a New York : |b Academic Press, |c 1983. | ||
300 | |a 1 online resource (xiii, 468 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Pure and applied mathematics ; |v 103 | |
520 | |a This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest. | ||
505 | 0 | |a Manifold Theory. Tensors. Semi-Riemannian Manifolds. Semi-Riemannian Submanifolds. Riemannian and Lorenz Geometry. Special Relativity. Constructions. Symmetry and Constant Curvature. Isometries. Calculus of Variations. Homogeneous and Symmetric Spaces. General Relativity. Cosmology. Schwarzschild Geometry. Causality in Lorentz Manifolds. Fundamental Groups and Covering Manifolds. Lie Groups. Newtonian Gravitation. | |
504 | |a Includes bibliographical references (pages 456-457) and index. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Geometry, Riemannian. | |
650 | 0 | |a Manifolds (Mathematics) | |
650 | 0 | |a Calculus of tensors. | |
650 | 0 | |a Relativity (Physics) | |
650 | 6 | |a G�eom�etrie de Riemann. |0 (CaQQLa)201-0048530 | |
650 | 6 | |a Vari�et�es (Math�ematiques) |0 (CaQQLa)201-0014518 | |
650 | 6 | |a Calcul tensoriel. |0 (CaQQLa)201-0030334 | |
650 | 6 | |a Relativit�e (Physique) |0 (CaQQLa)201-0022050 | |
650 | 7 | |a MATHEMATICS |x Pre-Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Reference. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Essays. |2 bisacsh | |
650 | 7 | |a Calculus of tensors |2 fast |0 (OCoLC)fst00844137 | |
650 | 7 | |a Geometry, Riemannian |2 fast |0 (OCoLC)fst00940940 | |
650 | 7 | |a Manifolds (Mathematics) |2 fast |0 (OCoLC)fst01007726 | |
650 | 7 | |a Relativity (Physics) |2 fast |0 (OCoLC)fst01093604 | |
650 | 1 | 7 | |a Riemann-vlakken. |2 gtt |
650 | 1 | 7 | |a Tensoren. |2 gtt |
650 | 1 | 7 | |a Relativiteitstheorie. |2 gtt |
650 | 1 | 7 | |a Manifolds. |2 gtt |
650 | 7 | |a Geometria. |2 larpcal | |
653 | |a Topological spaces: Riemannian manifolds | ||
776 | 0 | 8 | |i Print version: |a O'Neill, Barrett. |t Semi-Riemannian geometry. |d New York : Academic Press, 1983 |z 0125267401 |z 9780125267403 |w (DLC) 82013917 |w (OCoLC)8708965 |
830 | 0 | |a Pure and applied mathematics (Academic Press) ; |v 103. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780125267403 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/publication?issn=00798169&volume=103 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/bookseries/00798169/103 |z Texto completo |