Cargando…

Semi-Riemannian geometry : with applications to relativity /

This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: O'Neill, Barrett
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Academic Press, 1983.
Colección:Pure and applied mathematics (Academic Press) ; 103.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn316568577
003 OCoLC
005 20231117015251.0
006 m o d
007 cr cn|||||||||
008 090320s1983 nyu ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OCLCQ  |d OPELS  |d OCLCQ  |d OCLCF  |d OCLCO  |d DEBBG  |d UIU  |d N$T  |d IDEBK  |d E7B  |d YDXCP  |d MERUC  |d DEBSZ  |d OCLCQ  |d COO  |d OCLCQ  |d NLE  |d UKMGB  |d TKN  |d LEAUB  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB6H6640  |2 bnb 
016 7 |a 017608388  |2 Uk 
019 |a 301289371  |a 646773909 
020 |a 9780080570570  |q (electronic bk.) 
020 |a 0080570577  |q (electronic bk.) 
020 |z 9780125267403 
020 |z 0125267401 
035 |a (OCoLC)316568577  |z (OCoLC)301289371  |z (OCoLC)646773909 
050 4 |a QA3  |b .P8 vol. 103eb 
050 4 |a QA649  |b .O64 1983eb 
072 7 |a MAT  |x 023000  |2 bisacsh 
072 7 |a MAT  |x 026000  |2 bisacsh 
072 7 |a MAT  |x 039000  |2 bisacsh 
082 0 4 |a 516.3/73  |2 22 
100 1 |a O'Neill, Barrett. 
245 1 0 |a Semi-Riemannian geometry :  |b with applications to relativity /  |c Barrett O'Neill. 
260 |a New York :  |b Academic Press,  |c 1983. 
300 |a 1 online resource (xiii, 468 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Pure and applied mathematics ;  |v 103 
520 |a This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest. 
505 0 |a Manifold Theory. Tensors. Semi-Riemannian Manifolds. Semi-Riemannian Submanifolds. Riemannian and Lorenz Geometry. Special Relativity. Constructions. Symmetry and Constant Curvature. Isometries. Calculus of Variations. Homogeneous and Symmetric Spaces. General Relativity. Cosmology. Schwarzschild Geometry. Causality in Lorentz Manifolds. Fundamental Groups and Covering Manifolds. Lie Groups. Newtonian Gravitation. 
504 |a Includes bibliographical references (pages 456-457) and index. 
588 0 |a Print version record. 
650 0 |a Geometry, Riemannian. 
650 0 |a Manifolds (Mathematics) 
650 0 |a Calculus of tensors. 
650 0 |a Relativity (Physics) 
650 6 |a G�eom�etrie de Riemann.  |0 (CaQQLa)201-0048530 
650 6 |a Vari�et�es (Math�ematiques)  |0 (CaQQLa)201-0014518 
650 6 |a Calcul tensoriel.  |0 (CaQQLa)201-0030334 
650 6 |a Relativit�e (Physique)  |0 (CaQQLa)201-0022050 
650 7 |a MATHEMATICS  |x Pre-Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Reference.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Essays.  |2 bisacsh 
650 7 |a Calculus of tensors  |2 fast  |0 (OCoLC)fst00844137 
650 7 |a Geometry, Riemannian  |2 fast  |0 (OCoLC)fst00940940 
650 7 |a Manifolds (Mathematics)  |2 fast  |0 (OCoLC)fst01007726 
650 7 |a Relativity (Physics)  |2 fast  |0 (OCoLC)fst01093604 
650 1 7 |a Riemann-vlakken.  |2 gtt 
650 1 7 |a Tensoren.  |2 gtt 
650 1 7 |a Relativiteitstheorie.  |2 gtt 
650 1 7 |a Manifolds.  |2 gtt 
650 7 |a Geometria.  |2 larpcal 
653 |a Topological spaces: Riemannian manifolds 
776 0 8 |i Print version:  |a O'Neill, Barrett.  |t Semi-Riemannian geometry.  |d New York : Academic Press, 1983  |z 0125267401  |z 9780125267403  |w (DLC) 82013917  |w (OCoLC)8708965 
830 0 |a Pure and applied mathematics (Academic Press) ;  |v 103. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780125267403  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=00798169&volume=103  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/00798169/103  |z Texto completo