Cargando…

Integer and mixed programming : theory and applications /

Integer and mixed programming : theory and applications.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kaufmann, A. (Arnold), 1911-1994
Otros Autores: Henry-Labord�ere, A.
Formato: Electrónico eBook
Idioma:Inglés
Francés
Publicado: New York : Academic Press, 1977.
Colección:Mathematics in science and engineering ; v. 137.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo
Tabla de Contenidos:
  • Front Cover; Integer and Mixed Programming: Theory and Applications; Copyright Page; Contents; Preface; Part I: METHODS AND MODELS; Chapter I. PROGRAMS WITH INTEGER AND MIXED VALUES; Section 1. Introduction; Section 2. Some Examples of Problems with Integer Solutions; Section 3. Boole's Binary Algebra; Section 4. Methods of Solving Programs with Integer Values; Section 5. Some More Complicated Examples of Problems with Integer Values; Section 6. Arborescent and Cut Methods for Solving Programs with Integer Values; Section 7. Programs with Mixed Numbers; Section 8. Practical Cases
  • Part 2: MATHEMATICAL THEORYChapter II. ALGORITHMS AND HEURISTICS FOR INTEGER OR MIXED PROGRAMS; Section 9. Introduction; Section 10. Mathematical Properties of Boole's Binary Algebra; Section 11. Lattice Theory; Section 12. Other Important Properties of Boole's Binary Algebra; Section 13. Solutions for Boolean Equations and Inequations; Section 14. Mathematical Properties of Programming with Integers; Section 15. Properties of the Optimums of Convex and Concave Functions; Section 16. Complements on the Theory of Linear Programming; Section 17. Programming Method of Dantzig and Manne
  • Section 18. Solving Linear Equations with IntegersSection 19. Gomory's Method for Solving Integer Programs; Supplement. MIXED PROGRAMMING AND RECENT METHODS OF INTEGER PROGRAMMING; Section 20. Asymptotic Programming in Integers; Section 21. Partition of Linear Programs into Mixed Numbers; Section 22. Mixed Programming on a Cone; Section 23. Trubin's Algorithm; Conclusion; Appendix: OPERATIONS ON MODULO 1 EQUATIONS; Bibliography; Index