An introduction to homological algebra /
Introduction to Homological Algebra, 85.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Academic Press,
1979.
|
Colección: | Pure and applied mathematics (Academic Press) ;
85. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn316566754 | ||
003 | OCoLC | ||
005 | 20231117015240.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 090320s1979 nyua ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d OPELS |d OCLCQ |d OCLCF |d OCLCO |d DEBBG |d N$T |d IDEBK |d E7B |d YDXCP |d OCLCQ |d COO |d OCLCQ |d DEBSZ |d NLE |d UKMGB |d OCLCQ |d OCLCO |d VLY |d S2H |d OCLCO |d OCLCQ |d OCLCO | ||
066 | |c Zsym | ||
016 | 7 | |a 017585564 |2 Uk | |
019 | |a 299168097 |a 646774854 |a 1162099887 | ||
020 | |a 9780125992503 | ||
020 | |a 0125992505 | ||
020 | |a 9780080874012 |q (electronic bk.) | ||
020 | |a 0080874010 |q (electronic bk.) | ||
020 | |a 9786611768911 | ||
020 | |a 6611768912 | ||
035 | |a (OCoLC)316566754 |z (OCoLC)299168097 |z (OCoLC)646774854 |z (OCoLC)1162099887 | ||
050 | 4 | |a QA3 |b .P8 vol. 85eb | |
072 | 7 | |a MAT |x 002050 |2 bisacsh | |
082 | 0 | 4 | |a 512/.55 |2 22 |
100 | 1 | |a Rotman, Joseph J., |d 1934- | |
245 | 1 | 3 | |a An introduction to homological algebra / |c Joseph J. Rotman. |
260 | |a New York : |b Academic Press, |c 1979. | ||
300 | |a 1 online resource (xi, 376 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Pure and applied mathematics, a series of monographs and textbooks ; |v 85 | |
504 | |a Includes bibliographical references (pages 367-369) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Specific Rings; ; ; Noetherian Rings; ; ; Semisimple Rings; ; ; Von Neumann Regular Rings; ; ; Hereditary and Dedekind Rings; ; ; Semihereditary and Pr�ufer Rings; ; ; Quasi-Frobenius Rings; ; ; Local Rings and Artinian Rings; ; ; Polynomial Rings; ; ; 5. Extensions of Groups; ; ; 6. Homology; ; ; Homology Functors; ; ; Derived Functors; ; ; 7. Ext; ; ; Elementary Properties; ; ; Ext and Extensions; ; ; Axioms; ; ; 8. Tor; ; ; Elementary Properties; ; ; Tor and Torsion; ; ; Universal Coefficient Theorems; ; ; 9. Son of Specific Rings; ; ; Dimensions; ; ; Hilbert's Syzygy Theorem; ; ; Serre's Theorem; ; ; Mixed Identities; ; ; Commutative Noetherian Local Rings; ; ; 10. | |
505 | 0 | |a The Return of Cohomology of Groups; ; ; Homology Groups; ; ; Cohomology Groups; ; ; Computations and Applications; ; ; 11. Spectral Sequences; ; ; Exact Couples and Five-Term Sequences; ; ; Derived Couples and Spectral Sequences; ; ; Filtrations and Convergence; ; ; Bicomplexes; ; ; K�unneth Theorems; ; ; Grothendieck Spectral Sequences; ; ; More Groups; ; ; More Modules; ; ; References; ; ; Index. | |
520 | |a Introduction to Homological Algebra, 85. | ||
546 | |a English. | ||
650 | 0 | |a Algebra, Homological. | |
650 | 6 | |a Alg�ebre homologique. |0 (CaQQLa)201-0025075 | |
650 | 7 | |a MATHEMATICS |x Algebra |x Linear. |2 bisacsh | |
650 | 7 | |a Algebra, Homological |2 fast |0 (OCoLC)fst00804927 | |
650 | 1 | 7 | |a Homologische algebra. |2 gtt |
776 | 0 | 8 | |i Print version: |a Rotman, Joseph J., 1934- |t Introduction to homological algebra. |d New York : Academic Press, 1979 |z 0125992505 |z 9780125992503 |w (DLC) 78020001 |w (OCoLC)4641939 |
830 | 0 | |a Pure and applied mathematics (Academic Press) ; |v 85. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780125992503 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/publication?issn=00798169&volume=85 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/bookseries/00798169/85 |z Texto completo |
880 | 0 | |6 505-00/Zsym |a Preface; ; ; Contents; ; ; 1. Introduction; ; ; Line Integrals and Independence of Path; ; ; Categories and Functors; ; ; Tensor Products; ; ; Singular Homology; ; ; 2. Hom and �; ; ; Modules; ; ; Sums and Products; ; ; Exactness; ; ; Adjoints; ; ; Direct Limits; ; ; Inverse Limits; ; ; 3. Projectives, Injectives, and Flats; ; ; Free Modules; ; ; Projective Modules; ; ; Injective Modules; ; ; Watts' Theorems; ; ; Flat Modules; ; ; Purity; ; ; Localization; ; ; 4. |