Cargando…

Lectures on homotopy theory /

The central idea of the lecture course which gave birth to this book was to define the homotopy groups of a space and then give all the machinery needed to prove in detail that the nth homotopy group of the sphere Sn, for n greater than or equal to 1 is isomorphic to the group of the integers, that...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Piccinini, Renzo A., 1933-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; New York : New York, N.Y., U.S.A. : North-Holland ; Distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., 1992.
Colección:North-Holland mathematics studies ; 171.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn316566728
003 OCoLC
005 20231117015240.0
006 m o d
007 cr cn|||||||||
008 090320s1992 ne a ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OPELS  |d OCLCQ  |d OCLCF  |d OCLCO  |d DEBBG  |d N$T  |d IDEBK  |d E7B  |d MERUC  |d YDXCP  |d OCLCQ  |d COO  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d LEAUB  |d VLY  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 297721416  |a 646758416  |a 742291940  |a 815687162  |a 823116652  |a 823837812  |a 823905993  |a 824095633  |a 824148146  |a 1162246959 
020 |a 9780444892386 
020 |a 0444892389 
020 |a 9780080872827  |q (electronic bk.) 
020 |a 0080872824  |q (electronic bk.) 
020 |a 1281754625 
020 |a 9781281754622 
020 |a 9786611754624 
020 |a 6611754628 
035 |a (OCoLC)316566728  |z (OCoLC)297721416  |z (OCoLC)646758416  |z (OCoLC)742291940  |z (OCoLC)815687162  |z (OCoLC)823116652  |z (OCoLC)823837812  |z (OCoLC)823905993  |z (OCoLC)824095633  |z (OCoLC)824148146  |z (OCoLC)1162246959 
050 4 |a QA612.7  |b .P53 1992eb 
072 7 |a MAT  |x 038000  |2 bisacsh 
072 7 |a PBPD  |2 bicssc 
082 0 4 |a 514/.24  |2 22 
100 1 |a Piccinini, Renzo A.,  |d 1933- 
245 1 0 |a Lectures on homotopy theory /  |c Renzo A. Piccinini. 
260 |a Amsterdam ;  |a New York :  |b North-Holland ;  |a New York, N.Y., U.S.A. :  |b Distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.,  |c 1992. 
300 |a 1 online resource (xii, 293 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a North-Holland mathematics studies ;  |v 171 
520 |a The central idea of the lecture course which gave birth to this book was to define the homotopy groups of a space and then give all the machinery needed to prove in detail that the nth homotopy group of the sphere Sn, for n greater than or equal to 1 is isomorphic to the group of the integers, that the lower homotopy groups of Sn are trivial and that the third homotopy group of S2 is also isomorphic to the group of the integers. All this was achieved by discussing H-spaces and CoH-spaces, fibrations and cofibrations (rather thoroughly), simplicial structures and the homotopy groups of maps. Later, the book was expanded to introduce CW-complexes and their homotopy groups, to construct a special class of CW-complexes (the Eilenberg-Mac Lane spaces) and to include a chapter devoted to the study of the action of the fundamental group on the higher homotopy groups and the study of fibrations in the context of a category in which the fibres are forced to live; the final material of that chapter is a comparison of various kinds of universal fibrations. Completing the book are two appendices on compactly generated spaces and the theory of colimits. The book does not require any prior knowledge of Algebraic Topology and only rudimentary concepts of Category Theory are necessary; however, the student is supposed to be well at ease with the main general theorems of Topology and have a reasonable mathematical maturity. 
500 |a An expanded version of lectures given at the Scuola Matematica Interuniversitaria, in Perugia, during the summer of 1989. 
504 |a Includes bibliographical references (pages 285-287) and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; Lectures on Homotopy Theory; Copyright Page; Contents; Chapter 1. Homotopy Groups; Chapter 2. Fibrations and Cofibrations; Chapter 3. Exact Homotopy Sequences; Chapter 4. Simplicial Complexes; Chapter 5. Relative Homotopy Groups; Chapter 6. Homotopy Theory of CW-Complexes; Chapter 7. Fibrations Revisited; Appendix A: Colimits; Appendix B: Compactly generated spaces; Bibliography; Index. 
546 |a English. 
650 0 |a Homotopy theory. 
650 6 |a Homotopie.  |0 (CaQQLa)201-0041966 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Homotopy theory  |2 fast  |0 (OCoLC)fst00959852 
650 7 |a Homotopia.  |2 larpcal 
650 7 |a Homotopie.  |2 ram 
776 0 8 |i Print version:  |a Piccinini, Renzo A., 1933-  |t Lectures on homotopy theory.  |d Amsterdam ; New York : North-Holland ; New York, N.Y., U.S.A. : Distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., 1992  |z 0444892389  |z 9780444892386  |w (DLC) 91040793  |w (OCoLC)24871588 
830 0 |a North-Holland mathematics studies ;  |v 171. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444892386  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=03040208&volume=171  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/03040208/171  |z Texto completo