Approximation problems in analysis and probability /
This is an exposition of some special results on analytic or C & infin;-approximation of functions in the strong sense, in finite- and infinite-dimensional spaces. It starts with H. Whitney's theorem on strong approximation by analytic functions in finite-dimensional spaces and ends with so...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; New York : New York, N.Y., U.S.A. :
North-Holland ; Distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.,
1989.
|
Colección: | North-Holland mathematics studies ;
159. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn316566724 | ||
003 | OCoLC | ||
005 | 20231117015239.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 090320s1989 ne ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d OPELS |d OCLCQ |d OCLCF |d OCLCO |d DEBBG |d N$T |d IDEBK |d E7B |d UA@ |d YDXCP |d OCLCQ |d DEBSZ |d LEAUB |d VLY |d S2H |d OCLCO |d OCLCQ |d OCLCO |d INARC | ||
019 | |a 307725367 |a 646775746 |a 1162246295 | ||
020 | |a 9780444880215 | ||
020 | |a 0444880216 | ||
020 | |a 9780080872704 |q (electronic bk.) | ||
020 | |a 0080872700 |q (electronic bk.) | ||
020 | |a 1281788600 | ||
020 | |a 9781281788603 | ||
020 | |a 9786611788605 | ||
020 | |a 6611788603 | ||
035 | |a (OCoLC)316566724 |z (OCoLC)307725367 |z (OCoLC)646775746 |z (OCoLC)1162246295 | ||
050 | 4 | |a QA221 |b .H375 1989eb | |
072 | 7 | |a MAT |x 000000 |2 bisacsh | |
082 | 0 | 4 | |a 511/.4 |2 22 |
100 | 1 | |a Heble, M. P. | |
245 | 1 | 0 | |a Approximation problems in analysis and probability / |c M.P. Heble. |
260 | |a Amsterdam ; |a New York : |b North-Holland ; |a New York, N.Y., U.S.A. : |b Distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., |c 1989. | ||
300 | |a 1 online resource (xi, 245 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a North-Holland mathematics studies ; |v 159 | |
520 | |a This is an exposition of some special results on analytic or C & infin;-approximation of functions in the strong sense, in finite- and infinite-dimensional spaces. It starts with H. Whitney's theorem on strong approximation by analytic functions in finite-dimensional spaces and ends with some recent results by the author on strong C & infin;-approximation of functions defined in a separable Hilbert space. The volume also contains some special results on approximation of stochastic processes. The results explained in the book have been obtained over a span of nearly five decades. | ||
504 | |a Includes bibliographical references (pages 237-241). | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; Approximation Problems in Analysis and Probability; Copyright Page; Contents; Introduction; Chapter I. Weierstrass-Stone theorem and generalisations -- a brief survey; 1. Weierstrass-Stone theorem; 2. Closure of a module -- the weighted approximation problem; 3. Criteria of localisability; 4. A differentiable variant of the Stone-Weierstrass theorem; 5. Further differentiable variants of the Stone-Weierstrass theorem; Chapter II. Strong approximation in finite-dimensional spaces; 1. H. Whitney's theorem on analytic approximation | |
505 | 8 | |a 2. Ci -approximation in a finite-dimensional spaceChapter III. Strong approximation in infinite-dimensional spaces; 1. Kurzweil's theorems on analytic approximation; 2. Smoothness properties of norms in Lp-spaces; 3. Ci -partitions of unity in Hilbert space; 4. Theorem of Bonic and Frampton; 5. Smale's Theorem; 6. Theorem of Eells and McAlpin; 7. Contribution of J. Wells and K. Sundaresan; 8. Theorems of Desolneux-Moulis; 9. Ck-approximation of Ck by Ci -a theorem of Heble; 10. Connection between strong approximation and earlier ideas of Bernstein-Nachbin | |
505 | 8 | |a 11. Strong approximation -- other directionsChapter IV. Approximation problems in probability; 1. Bernstein's proof of Weierstrass theorem; 2. Some recent Bernstein-type approximation results; 3. A theorem of H. Steinhaus; 4. The Wiener process or Brownian motion; 5. Jump processes -- a theorem of Skorokhod; Appendix 1: Topological vector spaces; Appendix 2: Differential Calculus in Banach spaces; Appendix 3: Differentiable Banach manifolds; Appendix 4: Probability theory; Bibliography; Index | |
546 | |a English. | ||
650 | 0 | |a Approximation theory. | |
650 | 0 | |a Mathematical analysis. | |
650 | 0 | |a Probabilities. | |
650 | 2 | |a Probability |0 (DNLM)D011336 | |
650 | 6 | |a Th�eorie de l'approximation. |0 (CaQQLa)201-0021344 | |
650 | 6 | |a Analyse math�ematique. |0 (CaQQLa)201-0001156 | |
650 | 6 | |a Probabilit�es. |0 (CaQQLa)201-0011592 | |
650 | 7 | |a probability. |2 aat |0 (CStmoGRI)aat300055653 | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a Approximation theory |2 fast |0 (OCoLC)fst00811829 | |
650 | 7 | |a Mathematical analysis |2 fast |0 (OCoLC)fst01012068 | |
650 | 7 | |a Probabilities |2 fast |0 (OCoLC)fst01077737 | |
650 | 7 | |a Approximation, th�eorie de l'. |2 ram | |
650 | 7 | |a Analyse math�ematique. |2 ram | |
650 | 7 | |a Probabilit�es. |2 ram | |
776 | 0 | 8 | |i Print version: |a Heble, M.P. |t Approximation problems in analysis and probability. |d Amsterdam ; New York : North-Holland ; New York, N.Y., U.S.A. : Distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., 1989 |z 0444880216 |z 9780444880215 |w (DLC) 89016147 |w (OCoLC)20012521 |
830 | 0 | |a North-Holland mathematics studies ; |v 159. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780444880215 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/publication?issn=03040208&volume=159 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/bookseries/03040208/159 |z Texto completo |