Operators and representation theory : canonical models for algebras of operators arising in quantum mechanics /
Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas. This volume focuses on representations of the universal enveloping algebra, covariant representations i...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; New York : New York, N.Y., U.S.A. :
North-Holland ; Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.,
1988.
|
Colección: | North-Holland mathematics studies ;
147. Notas de matem�atica (Rio de Janeiro, Brazil) ; no. 120. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
Sumario: | Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas. This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly elegant manner by the use of Lie algebras, extensions, and projective representations. In several cases, this Lie algebraic approach to questions in mathematical physics and C*-algebra theory is new; for example, the Lie algebraic treatment of the spectral theory of curved magnetic field Hamiltonians, the treatment of irrational rotation type algebras, and the Virasoro algebra. Also examined are C*-algebraic methods used (in non-traditional ways) in the study of representations of infinite-dimensional Lie algebras and their extensions, and the methods developed by A. Connes and M.A. Rieffel for the study of the Yang-Mills problem. Cutting across traditional separations between fields of specialization, the book addresses a broad audience of graduate students and researchers. |
---|---|
Descripción Física: | 1 online resource (viii, 337 pages) |
Bibliografía: | Includes bibliographical references (pages 285-329) and index. |
ISBN: | 9780444703217 0444703217 9780080872582 0080872581 |