MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn316566632
003 OCoLC
005 20231117015237.0
006 m o d
007 cr cnu---unuuu
008 090320s1970 nyua ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d N$T  |d OCLCQ  |d EBLCP  |d IDEBK  |d OCLCQ  |d OPELS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCO  |d DEBBG  |d E7B  |d OCLCE  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d AGLDB  |d OCLCQ  |d OCLCO  |d JBG  |d OCLCA  |d VTS  |d STF  |d OCLCA  |d OCLCQ  |d K6U  |d REC  |d LUN  |d INARC  |d OCLCQ  |d OCLCO  |d SGP  |d OCLCQ 
019 |a 646827356  |a 752636778  |a 978482839  |a 978848625  |a 1047945243  |a 1086407352  |a 1119006917  |a 1157100094  |a 1157930547  |a 1157971401  |a 1178673060  |a 1183909851  |a 1249372308 
020 |a 9780080955742  |q (electronic bk.) 
020 |a 0080955746  |q (electronic bk.) 
020 |z 9780122262500 
020 |z 0122262506 
035 |a (OCoLC)316566632  |z (OCoLC)646827356  |z (OCoLC)752636778  |z (OCoLC)978482839  |z (OCoLC)978848625  |z (OCoLC)1047945243  |z (OCoLC)1086407352  |z (OCoLC)1119006917  |z (OCoLC)1157100094  |z (OCoLC)1157930547  |z (OCoLC)1157971401  |z (OCoLC)1178673060  |z (OCoLC)1183909851  |z (OCoLC)1249372308 
042 |a dlr 
050 4 |a QA402.3  |b .D94 1970eb 
055 3 |a QA402.3  |b D9 
072 7 |a TEC  |x 004000  |2 bisacsh 
072 7 |a TEC  |x 037000  |2 bisacsh 
082 0 4 |a 629.8/312  |2 22 
084 |a 30.10  |2 bcl 
084 |a 31.76  |2 bcl 
084 |a SK 880  |2 rvk 
100 1 |a Dyer, Peter. 
245 1 4 |a The computation and theory of optimal control /  |c Peter Dyer, Stephen R. McReynolds. 
260 |a New York :  |b Academic Press,  |c 1970. 
300 |a 1 online resource (x, 242 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics in science and engineering ;  |v v. 65 
504 |a Includes bibliographical references and index. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2011.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2011  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |a Front Cover; The Computation and Theory of Optimal Control; Copyright Page; Contents; Preface; Chapter 1. Introduction; 1.1 Notation; Chapter 2. Parameter Optimization; 2.1 Some Notation and Definitions; 2.2 Necessary and Sufficient Conditions for a Local Optimum; 2.3 Numerical Methods; Bibliography and Comments; Chapter 3. Optimal Control of Discrete Systems; 3.1 Notation; 3.2 The Problem; 3.3 Dynamic Programming Solution; 3.4 Linear Quadratic Problems; 3.5 Numerical Methods; 3.6 The Gradient Method; 3.7 The Newton-Raphson Method; 3.8 Neighboring Extremal Methods; Bibliography and Comments 
505 8 |a Chapter 4. Optimization of Continuous Systems4.1 Notation; 4.2 The Problem; 4.3 Dynamic Programming Solution; 4.4 The Linear Quadratic Problem; 4.5 Linear Quadratic Problem with Constraints; 4.6 Stability; Bibliography and Comments; Chapter 5. The Gradient Method and the First Variation; 5.1 The Gradient Algorithm; 5.2 The Gradient Algorithm: A Dynamic Programming Approach; 5.3 Examples; 5.4 The First Variation: A Stationarity Condition for a Local Optimum; Bibliography and Comments; Chapter 6. The Successive Sweep Method and the Second Variation; 6.1 Introduction 
505 8 |a 6.2 The Successive Sweep Method6.3 An Alternative Derivation: Control Parameters; 6.4 Examples; 6.5 Neighboring Optimal Control; 6.6 The Second Variation and the Convexity Condition; Bibliography and Comments; Chapter 7. Systems with Discontinuities; 7.1 Introduction; 7.2 Discontinuities: Continuous State Variables; 7.3 Application to Examples; 7.4 The First Variation: A Stationarity Condition; 7.5 The Second Variation: A Convexity Condition; 7.6 Discontinuities in the State Variables; 7.7 Tests for Optimality; 7.8 Example; Bibliography and Comments 
505 8 |a Chapter 8. The Maximum Principle and the Solution of Two-Point Boundary Value Problems8.1 Introduction; 8.2 The Maximum Principle; 8.3 The Linear Quadratic Problem; 8.4 Techniques for Solving Linear Two-Point Boundary Value Problems; 8.5 Newton-Raphson Methods for Solving Nonlinear Two-Point Boundary Value Problems; 8.6 Invariant Imbedding; Bibliography and Comments; Appendix Conjugate Points; Index 
520 |a The computation and theory of optimal control. 
650 0 |a Control theory. 
650 0 |a Mathematical optimization. 
650 6 |a Th�eorie de la commande.  |0 (CaQQLa)201-0012168 
650 6 |a Optimisation math�ematique.  |0 (CaQQLa)201-0007680 
650 7 |a TECHNOLOGY & ENGINEERING  |x Automation.  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Robotics.  |2 bisacsh 
650 7 |a Control theory.  |2 fast  |0 (OCoLC)fst00877085 
650 7 |a Mathematical optimization.  |2 fast  |0 (OCoLC)fst01012099 
650 7 |a Einf�uhrung  |2 gnd  |0 (DE-588)4151278-9 
650 7 |a Kontrolltheorie  |2 gnd  |0 (DE-588)4032317-1 
650 7 |a Lehrbuch  |2 gnd  |0 (DE-588)4123623-3 
650 7 |a Numerisches Verfahren  |2 gnd  |0 (DE-588)4128130-5 
650 7 |a Optimierung  |2 gnd  |0 (DE-588)4043664-0 
650 1 7 |a Numerieke wiskunde.  |2 gtt 
650 1 7 |a Optimaliseren.  |2 gtt 
650 7 |a Commande, Th�eorie de la.  |2 ram 
650 7 |a Optimisation math�ematique.  |2 ram 
650 7 |a Commande automatique  |x Math�ematiques.  |2 ram 
700 1 |a McReynolds, Stephen R. 
776 0 8 |i Print version:  |a Dyer, Peter.  |t Computation and theory of optimal control.  |d New York : Academic Press, 1970  |z 9780122262500  |w (DLC) 71091433  |w (OCoLC)90105 
830 0 |a Mathematics in science and engineering ;  |v v. 65. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780122262500  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=00765392&volume=65  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/00765392/65  |z Texto completo