Cargando…

The Steiner tree problem /

The Steiner problem asks for a shortest network which spans a given set of points. Minimum spanning networks have been well-studied when all connections are required to be between the given points. The novelty of the Steiner tree problem is that new auxiliary points can be introduced between the ori...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hwang, Frank
Otros Autores: Richards, Dana, 1955-, Winter, Pawel, 1952-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; New York : North-Holland, 1992.
Colección:Annals of discrete mathematics ; 53.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn316565524
003 OCoLC
005 20231117015232.0
006 m o d
007 cr cn|||||||||
008 090320s1992 ne a ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OPELS  |d OCLCQ  |d OCLCF  |d OCLCO  |d DEBBG  |d COO  |d N$T  |d IDEBK  |d E7B  |d MERUC  |d YDXCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d BUF  |d OCLCQ  |d LEAUB  |d VLY  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCA 
019 |a 305605298  |a 646775759  |a 742293024  |a 815691119  |a 823118275  |a 823838934  |a 823907310  |a 824096611  |a 824149394  |a 1162217485 
020 |a 9780444890986 
020 |a 044489098X 
020 |a 9780080867939  |q (electronic bk.) 
020 |a 0080867936  |q (electronic bk.) 
020 |a 1281789682 
020 |a 9781281789686 
020 |a 9786611789688 
020 |a 6611789685 
035 |a (OCoLC)316565524  |z (OCoLC)305605298  |z (OCoLC)646775759  |z (OCoLC)742293024  |z (OCoLC)815691119  |z (OCoLC)823118275  |z (OCoLC)823838934  |z (OCoLC)823907310  |z (OCoLC)824096611  |z (OCoLC)824149394  |z (OCoLC)1162217485 
050 4 |a QA166.3  |b .H83 1992eb 
072 7 |a MAT  |x 013000  |2 bisacsh 
072 7 |a PBV  |2 bicssc 
082 0 4 |a 511/.5  |2 22 
100 1 |a Hwang, Frank. 
245 1 4 |a The Steiner tree problem /  |c Frank K. Hwang, Dana S. Richards, Pawel Winter. 
260 |a Amsterdam ;  |a New York :  |b North-Holland,  |c 1992. 
300 |a 1 online resource (xi, 339 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Annals of discrete mathematics ;  |v 53 
520 |a The Steiner problem asks for a shortest network which spans a given set of points. Minimum spanning networks have been well-studied when all connections are required to be between the given points. The novelty of the Steiner tree problem is that new auxiliary points can be introduced between the original points so that a spanning network of all the points will be shorter than otherwise possible. These new points are called Steiner points - locating them has proved problematic and research has diverged along many different avenues. This volume is devoted to the assimilation of the rich field of intriguing analyses and the consolidation of the fragments. A section has been given to each of the three major areas of interest which have emerged. The first concerns the Euclidean Steiner Problem, historically the original Steiner tree problem proposed by Jarn�ik and K�ossler in 1934. The second deals with the Steiner Problem in Networks, which was propounded independently by Hakimi and Levin and has enjoyed the most prolific research amongst the three areas. The Rectilinear Steiner Problem, introduced by Hanan in 1965, is discussed in the third part. Additionally, a forth section has been included, with chapters discussing areas where the body of results is still emerging. The collaboration of three authors with different styles and outlooks affords individual insights within a cohesive whole. 
504 |a Includes bibliographical references and indexes. 
588 0 |a Print version record. 
505 0 |a Front Cover; The Steiner Tree Problem; Copyright Page; Foreword; Contents; Part I: Euclidean Steiner Problem; Chapter 1. Introduction; Chapter 2. Exact Algorithms; Chapter 3. The Steiner Ratio; Chapter 4. Heuristics; Chapter 5. Special Terminal-Sets; Chapter 6. Generalizations; Part II: Steiner Problem in Networks; Chapter 1. Introduction; Chapter 2. Reductions; Chapter 3. Exact Algorithms; Chapter 4. Heuristics; Chapter 5. Polynomially Solvable Cases; Chapter 6. Generalizations; Part III: Rectilinear Steiner Problem; Chapter 1. Introduction; Chapter 2. Heuristic Algoritlinis. 
546 |a English. 
650 0 |a Steiner systems. 
650 6 |a Syst�emes de Steiner.  |0 (CaQQLa)201-0241931 
650 7 |a MATHEMATICS  |x Graphic Methods.  |2 bisacsh 
650 7 |a Steiner systems.  |2 fast  |0 (OCoLC)fst01132934 
650 1 7 |a Handelsreizigersprobleem.  |2 gtt 
650 1 7 |a Netwerkanalyse.  |2 gtt 
650 7 |a Steiner, syst�emes de.  |2 ram 
653 0 |a Graph theory 
700 1 |a Richards, Dana,  |d 1955- 
700 1 |a Winter, Pawel,  |d 1952- 
776 0 8 |i Print version:  |a Hwang, Frank.  |t Steiner tree problem.  |d Amsterdam ; New York : North-Holland, 1992  |z 044489098X  |z 9780444890986  |w (DLC) 92025345  |w (OCoLC)26262243 
830 0 |a Annals of discrete mathematics ;  |v 53. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444890986  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=01675060&volume=53  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/01675060/53  |z Texto completo