Cargando…

Theories of computational complexity /

This volume presents four machine-independent theories of computational complexity, which have been chosen for their intrinsic importance and practical relevance. The book includes a wealth of results - classical, recent, and others which have not been published before. In developing the mathematics...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Calude, Cristian, 1952-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; New York : New York, N.Y., U.S.A. : North-Holland ; Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., 1988.
Colección:Annals of discrete mathematics ; 35.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo
Tabla de Contenidos:
  • Front Cover; Theories of Computational Complexity; Copyright Page; Contents; Preface; Introduction; Chapter 1; 1. Primitive Recursive Hierarchies; 1.1. Examples; 1.2. Ackermann-Peter's Hierarchy; 1.3. Primitive Recursive Functions; 1.4. Primitive Recursive Invariants; 1.5. Primitive Recursive Enumerations; 1.6. Sudan's Hierarchy; 1.7. Universal Sequences of Primitive Recursive Functions; 1.8. Primitive Recursive String-functions; 1.9. History; 1.10. Exercises and Problem; Chapter 2; 2. Recursive Functions; 2.1. Examples; 2.2. Arithmetization of Computation: An Example
  • 2.3. Equational Characterization of Partial Recursive Functions2.4. GODEL Numberings; 2.5. Recursively Enumerable Sets; 2.6. Undecidability and Independence; 2.7. Uniformity; 2.8. Operators; 2.9. Recursive Real Numbers; 2.10. History; 2.11. Exercises and Problems; Chapter 3; 3. BLUM's Complexity Theory; 3.1. Examples; 3.2. BLUM Spaces; 3.3. Recursive Dependence of Complexity Measures; 3.4. Complexity Classes; 3.5. The Speed-up Phenomenon; 3.6. The Union Theorem; 3.7. Hard Recursive Functions; 3.8. Complexity Sequences; 3.9. A Topological Analysis; 3.10. History; 3.11. Exercises and Problems
  • Chapter 44. KOLMOGOROV and MARTIN-LOF's Complexity Theory; 4.1. Examples; 4.2. KOLMOGOROV's Complexity; 4.3. MARTIN-LOF Tests; 4.4. Undecidability Theorems; 4.5. Representability Theorems; 4.6. Recursive MARTIN-LOF Tests; 4.7. Infinite Oscillations; 4.8. Probabilistic Algorithms; 4.9. History; 4.10. Exercises and Problems; Chapter 5; 5. Subrecursive Programming Hierarchies; 5.1. Examples; 5.2. The LOOP Language; 5.3. LOOP Hierarchies; 5.4. A Universal Language; 5.5. A Dynamic Characterization of LOOP Classes; 5.6. Augmented LOOP Languages; 5.7. Simple Functions; 5.8. Program Size
  • 5.9. History5.10. Exercises and Problems; Bibliography; Index of notations; Subject index; Author index