Cargando…

Clifford theory for group representations /

Let N be a normal subgroup of a finite group G and let F be a field. An important method for constructing irreducible FG-modules consists of the application (perhaps repeated) of three basic operations: (i) restriction to FN. (ii) extension from FN. (iii) induction from FN. This is the `Clifford The...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Karpilovsky, Gregory, 1940-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; New York : New York, N.Y., U.S.A. : North-Holland ; Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., �1989.
Colección:North-Holland mathematics studies ; 156.
Notas de matem�atica (Rio de Janeiro, Brazil) ; no. 125.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn316564629
003 OCoLC
005 20231117015231.0
006 m o d
007 cr cn|||||||||
008 090320s1989 ne ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OPELS  |d OCLCQ  |d OCLCF  |d OCLCO  |d DEBBG  |d N$T  |d IDEBK  |d E7B  |d MERUC  |d OCLCE  |d YDXCP  |d OCLCQ  |d COO  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCO  |d LEAUB  |d ADU  |d LUN  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 304660231  |a 646773889  |a 802299819  |a 823839006  |a 823907380  |a 824096678  |a 824149466  |a 1086496718  |a 1160054893 
020 |a 9780444873774 
020 |a 0444873775 
020 |a 9780080872674  |q (electronic bk.) 
020 |a 0080872670  |q (electronic bk.) 
020 |a 1281790575 
020 |a 9781281790576 
035 |a (OCoLC)316564629  |z (OCoLC)304660231  |z (OCoLC)646773889  |z (OCoLC)802299819  |z (OCoLC)823839006  |z (OCoLC)823907380  |z (OCoLC)824096678  |z (OCoLC)824149466  |z (OCoLC)1086496718  |z (OCoLC)1160054893 
042 |a dlr 
050 4 |a QA1  |b .N86 no. 125eb 
050 4 |a QA199  |b .K37 1989eb 
072 7 |a MAT  |x 002050  |2 bisacsh 
072 7 |a PBFD  |2 bicssc 
082 0 4 |a 510  |2 22 
082 0 4 |a 512/.57  |2 22 
084 |a SI 867  |2 rvk 
100 1 |a Karpilovsky, Gregory,  |d 1940- 
245 1 0 |a Clifford theory for group representations /  |c Gregory Karpilovsky. 
260 |a Amsterdam ;  |a New York :  |b North-Holland ;  |a New York, N.Y., U.S.A. :  |b Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.,  |c �1989. 
300 |a 1 online resource (x, 364 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a North-Holland mathematics studies ;  |v 156 
490 1 |a Notas de matem�atica ;  |v 125 
520 |a Let N be a normal subgroup of a finite group G and let F be a field. An important method for constructing irreducible FG-modules consists of the application (perhaps repeated) of three basic operations: (i) restriction to FN. (ii) extension from FN. (iii) induction from FN. This is the `Clifford Theory' developed by Clifford in 1937. In the past twenty years, the theory has enjoyed a period of vigorous development. The foundations have been strengthened and reorganized from new points of view, especially from the viewpoint of graded rings and crossed products. The purpose of this monograph is to tie together various threads of the development in order to give a comprehensive picture of the current state of the subject. It is assumed that the reader has had the equivalent of a standard first-year graduate algebra course, i.e. familiarity with basic ring-theoretic, number-theoretic and group-theoretic concepts, and an understanding of elementary properties of modules, tensor products and fields. 
504 |a Includes bibliographical references (pages 343-354) and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; Clifford Theory for Group Representations; Copyright Page; Preface; Contents; Chapter 1. Preliminaries; Chapter 2. Restriction to normal subgroups; Chapter 3. Induction and extension from normal subgroups; Bibliography; Notation; Index. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2011.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2011  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
650 0 |a Clifford algebras. 
650 0 |a Representations of groups. 
650 6 |a Alg�ebres de Clifford.  |0 (CaQQLa)201-0036711 
650 6 |a Repr�esentations de groupes.  |0 (CaQQLa)201-0026866 
650 7 |a MATHEMATICS  |x Algebra  |x Linear.  |2 bisacsh 
650 7 |a Clifford algebras  |2 fast  |0 (OCoLC)fst00864221 
650 7 |a Representations of groups  |2 fast  |0 (OCoLC)fst01094938 
650 7 |a Clifford-Algebra  |2 gnd  |0 (DE-588)4199958-7 
650 7 |a Darstellungstheorie  |2 gnd  |0 (DE-588)4148816-7 
650 7 |a Clifford, Alg�ebres de.  |2 ram 
650 7 |a Repr�esentations de groupes.  |2 ram 
776 0 8 |i Print version:  |a Karpilovsky, Gregory, 1940-  |t Clifford theory for group representations.  |d Amsterdam ; New York : North-Holland ; New York, N.Y., U.S.A. : Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., �1989  |z 0444873775  |z 9780444873774  |w (DLC) 89003233  |w (OCoLC)19456620 
830 0 |a North-Holland mathematics studies ;  |v 156. 
830 0 |a Notas de matem�atica (Rio de Janeiro, Brazil) ;  |v no. 125. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444873774  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=03040208&volume=156  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/03040208/156  |z Texto completo