Clifford theory for group representations /
Let N be a normal subgroup of a finite group G and let F be a field. An important method for constructing irreducible FG-modules consists of the application (perhaps repeated) of three basic operations: (i) restriction to FN. (ii) extension from FN. (iii) induction from FN. This is the `Clifford The...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; New York : New York, N.Y., U.S.A. :
North-Holland ; Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.,
�1989.
|
Colección: | North-Holland mathematics studies ;
156. Notas de matem�atica (Rio de Janeiro, Brazil) ; no. 125. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn316564629 | ||
003 | OCoLC | ||
005 | 20231117015231.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 090320s1989 ne ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d OPELS |d OCLCQ |d OCLCF |d OCLCO |d DEBBG |d N$T |d IDEBK |d E7B |d MERUC |d OCLCE |d YDXCP |d OCLCQ |d COO |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCO |d LEAUB |d ADU |d LUN |d S2H |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 304660231 |a 646773889 |a 802299819 |a 823839006 |a 823907380 |a 824096678 |a 824149466 |a 1086496718 |a 1160054893 | ||
020 | |a 9780444873774 | ||
020 | |a 0444873775 | ||
020 | |a 9780080872674 |q (electronic bk.) | ||
020 | |a 0080872670 |q (electronic bk.) | ||
020 | |a 1281790575 | ||
020 | |a 9781281790576 | ||
035 | |a (OCoLC)316564629 |z (OCoLC)304660231 |z (OCoLC)646773889 |z (OCoLC)802299819 |z (OCoLC)823839006 |z (OCoLC)823907380 |z (OCoLC)824096678 |z (OCoLC)824149466 |z (OCoLC)1086496718 |z (OCoLC)1160054893 | ||
042 | |a dlr | ||
050 | 4 | |a QA1 |b .N86 no. 125eb | |
050 | 4 | |a QA199 |b .K37 1989eb | |
072 | 7 | |a MAT |x 002050 |2 bisacsh | |
072 | 7 | |a PBFD |2 bicssc | |
082 | 0 | 4 | |a 510 |2 22 |
082 | 0 | 4 | |a 512/.57 |2 22 |
084 | |a SI 867 |2 rvk | ||
100 | 1 | |a Karpilovsky, Gregory, |d 1940- | |
245 | 1 | 0 | |a Clifford theory for group representations / |c Gregory Karpilovsky. |
260 | |a Amsterdam ; |a New York : |b North-Holland ; |a New York, N.Y., U.S.A. : |b Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., |c �1989. | ||
300 | |a 1 online resource (x, 364 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a North-Holland mathematics studies ; |v 156 | |
490 | 1 | |a Notas de matem�atica ; |v 125 | |
520 | |a Let N be a normal subgroup of a finite group G and let F be a field. An important method for constructing irreducible FG-modules consists of the application (perhaps repeated) of three basic operations: (i) restriction to FN. (ii) extension from FN. (iii) induction from FN. This is the `Clifford Theory' developed by Clifford in 1937. In the past twenty years, the theory has enjoyed a period of vigorous development. The foundations have been strengthened and reorganized from new points of view, especially from the viewpoint of graded rings and crossed products. The purpose of this monograph is to tie together various threads of the development in order to give a comprehensive picture of the current state of the subject. It is assumed that the reader has had the equivalent of a standard first-year graduate algebra course, i.e. familiarity with basic ring-theoretic, number-theoretic and group-theoretic concepts, and an understanding of elementary properties of modules, tensor products and fields. | ||
504 | |a Includes bibliographical references (pages 343-354) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; Clifford Theory for Group Representations; Copyright Page; Preface; Contents; Chapter 1. Preliminaries; Chapter 2. Restriction to normal subgroups; Chapter 3. Induction and extension from normal subgroups; Bibliography; Notation; Index. | |
506 | |3 Use copy |f Restrictions unspecified |2 star |5 MiAaHDL | ||
533 | |a Electronic reproduction. |b [Place of publication not identified] : |c HathiTrust Digital Library, |d 2011. |5 MiAaHDL | ||
538 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |u http://purl.oclc.org/DLF/benchrepro0212 |5 MiAaHDL | ||
583 | 1 | |a digitized |c 2011 |h HathiTrust Digital Library |l committed to preserve |2 pda |5 MiAaHDL | |
650 | 0 | |a Clifford algebras. | |
650 | 0 | |a Representations of groups. | |
650 | 6 | |a Alg�ebres de Clifford. |0 (CaQQLa)201-0036711 | |
650 | 6 | |a Repr�esentations de groupes. |0 (CaQQLa)201-0026866 | |
650 | 7 | |a MATHEMATICS |x Algebra |x Linear. |2 bisacsh | |
650 | 7 | |a Clifford algebras |2 fast |0 (OCoLC)fst00864221 | |
650 | 7 | |a Representations of groups |2 fast |0 (OCoLC)fst01094938 | |
650 | 7 | |a Clifford-Algebra |2 gnd |0 (DE-588)4199958-7 | |
650 | 7 | |a Darstellungstheorie |2 gnd |0 (DE-588)4148816-7 | |
650 | 7 | |a Clifford, Alg�ebres de. |2 ram | |
650 | 7 | |a Repr�esentations de groupes. |2 ram | |
776 | 0 | 8 | |i Print version: |a Karpilovsky, Gregory, 1940- |t Clifford theory for group representations. |d Amsterdam ; New York : North-Holland ; New York, N.Y., U.S.A. : Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., �1989 |z 0444873775 |z 9780444873774 |w (DLC) 89003233 |w (OCoLC)19456620 |
830 | 0 | |a North-Holland mathematics studies ; |v 156. | |
830 | 0 | |a Notas de matem�atica (Rio de Janeiro, Brazil) ; |v no. 125. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780444873774 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/publication?issn=03040208&volume=156 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/bookseries/03040208/156 |z Texto completo |