Markov processes and learning models /
Markov processes and learning models.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Academic Press,
1972.
|
Colección: | Mathematics in science and engineering ;
v. 84. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn316563881 | ||
003 | OCoLC | ||
005 | 20231117015229.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090320s1972 nyu ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d N$T |d OCLCQ |d EBLCP |d IDEBK |d E7B |d OCLCE |d OCLCQ |d OPELS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCF |d DEBBG |d OCLCQ |d OCLCO |d OCLCQ |d COO |d OCLCO |d OCLCQ |d OCLCO |d DEBSZ |d AGLDB |d IOL |d OCLCQ |d MERUC |d OCLCQ |d OCLCO |d VTS |d OCLCQ |d AU@ |d OCLCO |d OCLCQ |d STF |d OCLCA |d K6U |d OCLCQ |d LUN |d INARC |d AJS |d OCLCQ |d OCLCO |d SGP |d OCLCQ | ||
016 | 7 | |a 000000059204 |2 AU | |
019 | |a 609254900 |a 646827457 |a 655871442 |a 823843562 |a 823912290 |a 824099334 |a 824154752 |a 978588729 |a 978827468 |a 1047898913 |a 1057998779 |a 1086427092 |a 1119106493 |a 1157098624 |a 1157984981 |a 1178684359 |a 1183912517 |a 1249430749 |a 1257380076 |a 1296759215 | ||
020 | |a 9780125214506 |q (electronic bk.) | ||
020 | |a 0125214502 |q (electronic bk.) | ||
020 | |a 9780080955933 |q (electronic bk.) | ||
020 | |a 0080955932 |q (electronic bk.) | ||
020 | |a 1282289748 | ||
020 | |a 9781282289741 | ||
035 | |a (OCoLC)316563881 |z (OCoLC)609254900 |z (OCoLC)646827457 |z (OCoLC)655871442 |z (OCoLC)823843562 |z (OCoLC)823912290 |z (OCoLC)824099334 |z (OCoLC)824154752 |z (OCoLC)978588729 |z (OCoLC)978827468 |z (OCoLC)1047898913 |z (OCoLC)1057998779 |z (OCoLC)1086427092 |z (OCoLC)1119106493 |z (OCoLC)1157098624 |z (OCoLC)1157984981 |z (OCoLC)1178684359 |z (OCoLC)1183912517 |z (OCoLC)1249430749 |z (OCoLC)1257380076 |z (OCoLC)1296759215 | ||
042 | |a dlr | ||
050 | 4 | |a LB1051 |b .N64 1972eb | |
072 | 7 | |a SCI |x 090000 |2 bisacsh | |
072 | 7 | |a PSY |x 008000 |2 bisacsh | |
072 | 7 | |a GPF |2 bicssc | |
082 | 0 | 4 | |a 153.1/50182 |2 22 |
084 | |a 77.34 |2 bcl | ||
084 | |a CM 2500 |2 rvk | ||
084 | |a QH 237 |2 rvk | ||
084 | |a SI 990 |2 rvk | ||
084 | |a SK 820 |2 rvk | ||
100 | 1 | |a Norman, M. Frank. | |
245 | 1 | 0 | |a Markov processes and learning models / |c M. Frank Norman. |
260 | |a New York : |b Academic Press, |c 1972. | ||
300 | |a 1 online resource (xiii, 274 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics in science and engineering ; |v v. 84 | |
504 | |a Includes bibliographical references (pages 263-267) and index. | ||
588 | 0 | |a Print version record. | |
506 | |3 Use copy |f Restrictions unspecified |2 star |5 MiAaHDL | ||
520 | |a Markov processes and learning models. | ||
533 | |a Electronic reproduction. |b [Place of publication not identified] : |c HathiTrust Digital Library, |d 2010. |5 MiAaHDL | ||
538 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |u http://purl.oclc.org/DLF/benchrepro0212 |5 MiAaHDL | ||
583 | 1 | |a digitized |c 2010 |h HathiTrust Digital Library |l committed to preserve |2 pda |5 MiAaHDL | |
505 | 0 | |a Front Cover; Markov Processes and Learning Models; Copyright Page; Contents; Preface; Chapter 0. Introduction; 0.1 Experiments and Models; 0.2 A General Theoretical Framework; 0.3 Overview; PART I: DISTANCE DIMINISHING MODELS; Chapter 1. Markov Processes and Random Systems with Complete Connections; 1.1 Markov Processes; 1.2 Random Systems with Complete Connections; Chapter 2. Distance Diminishing Models and Doeblin-Fortet Processes; 2.1 Distance Diminishing Models; 2.2 Transition Operators for Metric State Spaces | |
505 | 8 | |a Chapter 3. The Theorem of Ionescu Tulcea and Marinescu, and Compact Markov Processes3.1 A Class of Operators; 3.2 The Theorem of Ionescu Tulcea and Marinescu; 3.3 Compact Markov Processes: Preliminaries; 3.4 Ergodic Decomposition; 3.5 Subergodic Decomposition; 3.6 Regular and Absorbing Processes; 3.7 Finite Markov Chains; Chapter 4. Distance Diminishing Models with Noncompact State Spaces; 4.1 A Condition on p; 4.2 Invariant Subsets; Chapter 5. Functions of Markov Processes; 5.1 Introduction; 5.2 Central Limit Theorem; 5.3 Estimation of pu; 5.4 Estimation of s2; 5.5 A Representation of s2 | |
505 | 8 | |a 5.6 Asymptotic Stationarity5.7 Vector Valued Functions and Spectra; Chapter 6. Functions of Events; 6.1 Theprocess Xn' = (En, Xn+1); 6.2 Unbounded Functions of Several Events; PART II: SLOW LEARNING; Chapter 7. Introduction to Slow Learning; 7.1 Two Kinds of Slow Learning; 7.2 Small Probability; 7.3 Small Steps: Heuristics; Chapter 8. Transient Behavior in the Case of Large Drift; 8.1 A General Central Limit Theorem; 8.2 Properties of f(t); 8.3 Proofs of (A) and (B); 8.4 Proof of (C); 8.5 Near a Critical Point; Chapter 9. Transient Behavior in the Case of Small Drift | |
505 | 8 | |a 9.1 Diffusion Approximation in a Bounded Interval9.2 Invariance; 9.3 Semigroups; Chapter 10. Steady-State Behavior; 10.1 A Limit Theorem for Stationary Probabilities; 10.2 Proof of the Theorem; 10.3 A More Precise Approximation to E(Xn?); Chapter 11. Absorption Probabilities; 11.1 Bounded State Spaces; 11.2 Unbounded State Spaces; PART III: SPECIAL MODELS; Chapter 12. The Five-Operator Linear Model; 12.1 Criteria for Regularity and Absorption; 12.2 The Mean Learning Curve; 12.3 Interresponse Dependencies; 12.4 Slow Learning; Chapter 13. The Fixed Sample Size Model | |
505 | 8 | |a 13.1 Criteria for Regularity and Absorption13.2 Mean Learning Curve and Interresponse Dependencies; 13.3 Slow Learning; 13.4 Convergence to the Linear Model; Chapter 14. Additive Models; 14.1 Criteria for Recurrence and Absorption; 14.2 Asymptotic A1 Response Frequency; 14.3 Existence of Stationary Probabilities; 14.4 Uniqueness of the Stationary Probability; 14.5 Slow Learning; Chapter 15. Multiresponse Linear Models; 15.1 Criteria for Regularity; 15.2 The Distribution of Yn and Y8; Chapter 16. The Zeaman-House-Lovejoy Models; 16.1 A Criterion for Absorption; 16.2 Expected Total Errors | |
650 | 0 | |a Learning, Psychology of |x Mathematical models. | |
650 | 0 | |a Markov processes. | |
650 | 0 | |a Learning models (Stochastic processes) | |
650 | 2 | |a Markov Chains |0 (DNLM)D008390 | |
650 | 6 | |a Psychologie de l'apprentissage |0 (CaQQLa)201-0009360 |x Mod�eles math�ematiques. |0 (CaQQLa)201-0379082 | |
650 | 6 | |a Processus de Markov. |0 (CaQQLa)201-0024070 | |
650 | 6 | |a Mod�eles stochastiques d'apprentissage. |0 (CaQQLa)201-0138431 | |
650 | 7 | |a SCIENCE |x Cognitive Science. |2 bisacsh | |
650 | 7 | |a PSYCHOLOGY |x Cognitive Psychology. |2 bisacsh | |
650 | 7 | |a Learning models (Stochastic processes) |2 fast |0 (OCoLC)fst00995006 | |
650 | 7 | |a Learning, Psychology of |x Mathematical models. |2 fast |0 (OCoLC)fst00995013 | |
650 | 7 | |a Markov processes. |2 fast |0 (OCoLC)fst01010347 | |
650 | 7 | |a Lerntheorie |2 gnd |0 (DE-588)4114402-8 | |
650 | 7 | |a Markov-Prozess |2 gnd |0 (DE-588)4134948-9 | |
650 | 1 | 7 | |a Markov-processen. |2 gtt |
650 | 1 | 7 | |a Leerprocessen. |2 gtt |
776 | 0 | 8 | |i Print version: |a Norman, M. Frank. |t Markov processes and learning models. |d New York : Academic Press, 1972 |z 9780125214506 |w (DLC) 70182638 |w (OCoLC)340291 |
830 | 0 | |a Mathematics in science and engineering ; |v v. 84. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780125214506 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/publication?issn=00765392&volume=84 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/bookseries/00765392/84 |z Texto completo |