MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn316563881
003 OCoLC
005 20231117015229.0
006 m o d
007 cr cnu---unuuu
008 090320s1972 nyu ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d N$T  |d OCLCQ  |d EBLCP  |d IDEBK  |d E7B  |d OCLCE  |d OCLCQ  |d OPELS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d DEBBG  |d OCLCQ  |d OCLCO  |d OCLCQ  |d COO  |d OCLCO  |d OCLCQ  |d OCLCO  |d DEBSZ  |d AGLDB  |d IOL  |d OCLCQ  |d MERUC  |d OCLCQ  |d OCLCO  |d VTS  |d OCLCQ  |d AU@  |d OCLCO  |d OCLCQ  |d STF  |d OCLCA  |d K6U  |d OCLCQ  |d LUN  |d INARC  |d AJS  |d OCLCQ  |d OCLCO  |d SGP  |d OCLCQ 
016 7 |a 000000059204  |2 AU 
019 |a 609254900  |a 646827457  |a 655871442  |a 823843562  |a 823912290  |a 824099334  |a 824154752  |a 978588729  |a 978827468  |a 1047898913  |a 1057998779  |a 1086427092  |a 1119106493  |a 1157098624  |a 1157984981  |a 1178684359  |a 1183912517  |a 1249430749  |a 1257380076  |a 1296759215 
020 |a 9780125214506  |q (electronic bk.) 
020 |a 0125214502  |q (electronic bk.) 
020 |a 9780080955933  |q (electronic bk.) 
020 |a 0080955932  |q (electronic bk.) 
020 |a 1282289748 
020 |a 9781282289741 
035 |a (OCoLC)316563881  |z (OCoLC)609254900  |z (OCoLC)646827457  |z (OCoLC)655871442  |z (OCoLC)823843562  |z (OCoLC)823912290  |z (OCoLC)824099334  |z (OCoLC)824154752  |z (OCoLC)978588729  |z (OCoLC)978827468  |z (OCoLC)1047898913  |z (OCoLC)1057998779  |z (OCoLC)1086427092  |z (OCoLC)1119106493  |z (OCoLC)1157098624  |z (OCoLC)1157984981  |z (OCoLC)1178684359  |z (OCoLC)1183912517  |z (OCoLC)1249430749  |z (OCoLC)1257380076  |z (OCoLC)1296759215 
042 |a dlr 
050 4 |a LB1051  |b .N64 1972eb 
072 7 |a SCI  |x 090000  |2 bisacsh 
072 7 |a PSY  |x 008000  |2 bisacsh 
072 7 |a GPF  |2 bicssc 
082 0 4 |a 153.1/50182  |2 22 
084 |a 77.34  |2 bcl 
084 |a CM 2500  |2 rvk 
084 |a QH 237  |2 rvk 
084 |a SI 990  |2 rvk 
084 |a SK 820  |2 rvk 
100 1 |a Norman, M. Frank. 
245 1 0 |a Markov processes and learning models /  |c M. Frank Norman. 
260 |a New York :  |b Academic Press,  |c 1972. 
300 |a 1 online resource (xiii, 274 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics in science and engineering ;  |v v. 84 
504 |a Includes bibliographical references (pages 263-267) and index. 
588 0 |a Print version record. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
520 |a Markov processes and learning models. 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
505 0 |a Front Cover; Markov Processes and Learning Models; Copyright Page; Contents; Preface; Chapter 0. Introduction; 0.1 Experiments and Models; 0.2 A General Theoretical Framework; 0.3 Overview; PART I: DISTANCE DIMINISHING MODELS; Chapter 1. Markov Processes and Random Systems with Complete Connections; 1.1 Markov Processes; 1.2 Random Systems with Complete Connections; Chapter 2. Distance Diminishing Models and Doeblin-Fortet Processes; 2.1 Distance Diminishing Models; 2.2 Transition Operators for Metric State Spaces 
505 8 |a Chapter 3. The Theorem of Ionescu Tulcea and Marinescu, and Compact Markov Processes3.1 A Class of Operators; 3.2 The Theorem of Ionescu Tulcea and Marinescu; 3.3 Compact Markov Processes: Preliminaries; 3.4 Ergodic Decomposition; 3.5 Subergodic Decomposition; 3.6 Regular and Absorbing Processes; 3.7 Finite Markov Chains; Chapter 4. Distance Diminishing Models with Noncompact State Spaces; 4.1 A Condition on p; 4.2 Invariant Subsets; Chapter 5. Functions of Markov Processes; 5.1 Introduction; 5.2 Central Limit Theorem; 5.3 Estimation of pu; 5.4 Estimation of s2; 5.5 A Representation of s2 
505 8 |a 5.6 Asymptotic Stationarity5.7 Vector Valued Functions and Spectra; Chapter 6. Functions of Events; 6.1 Theprocess Xn' = (En, Xn+1); 6.2 Unbounded Functions of Several Events; PART II: SLOW LEARNING; Chapter 7. Introduction to Slow Learning; 7.1 Two Kinds of Slow Learning; 7.2 Small Probability; 7.3 Small Steps: Heuristics; Chapter 8. Transient Behavior in the Case of Large Drift; 8.1 A General Central Limit Theorem; 8.2 Properties of f(t); 8.3 Proofs of (A) and (B); 8.4 Proof of (C); 8.5 Near a Critical Point; Chapter 9. Transient Behavior in the Case of Small Drift 
505 8 |a 9.1 Diffusion Approximation in a Bounded Interval9.2 Invariance; 9.3 Semigroups; Chapter 10. Steady-State Behavior; 10.1 A Limit Theorem for Stationary Probabilities; 10.2 Proof of the Theorem; 10.3 A More Precise Approximation to E(Xn?); Chapter 11. Absorption Probabilities; 11.1 Bounded State Spaces; 11.2 Unbounded State Spaces; PART III: SPECIAL MODELS; Chapter 12. The Five-Operator Linear Model; 12.1 Criteria for Regularity and Absorption; 12.2 The Mean Learning Curve; 12.3 Interresponse Dependencies; 12.4 Slow Learning; Chapter 13. The Fixed Sample Size Model 
505 8 |a 13.1 Criteria for Regularity and Absorption13.2 Mean Learning Curve and Interresponse Dependencies; 13.3 Slow Learning; 13.4 Convergence to the Linear Model; Chapter 14. Additive Models; 14.1 Criteria for Recurrence and Absorption; 14.2 Asymptotic A1 Response Frequency; 14.3 Existence of Stationary Probabilities; 14.4 Uniqueness of the Stationary Probability; 14.5 Slow Learning; Chapter 15. Multiresponse Linear Models; 15.1 Criteria for Regularity; 15.2 The Distribution of Yn and Y8; Chapter 16. The Zeaman-House-Lovejoy Models; 16.1 A Criterion for Absorption; 16.2 Expected Total Errors 
650 0 |a Learning, Psychology of  |x Mathematical models. 
650 0 |a Markov processes. 
650 0 |a Learning models (Stochastic processes) 
650 2 |a Markov Chains  |0 (DNLM)D008390 
650 6 |a Psychologie de l'apprentissage  |0 (CaQQLa)201-0009360  |x Mod�eles math�ematiques.  |0 (CaQQLa)201-0379082 
650 6 |a Processus de Markov.  |0 (CaQQLa)201-0024070 
650 6 |a Mod�eles stochastiques d'apprentissage.  |0 (CaQQLa)201-0138431 
650 7 |a SCIENCE  |x Cognitive Science.  |2 bisacsh 
650 7 |a PSYCHOLOGY  |x Cognitive Psychology.  |2 bisacsh 
650 7 |a Learning models (Stochastic processes)  |2 fast  |0 (OCoLC)fst00995006 
650 7 |a Learning, Psychology of  |x Mathematical models.  |2 fast  |0 (OCoLC)fst00995013 
650 7 |a Markov processes.  |2 fast  |0 (OCoLC)fst01010347 
650 7 |a Lerntheorie  |2 gnd  |0 (DE-588)4114402-8 
650 7 |a Markov-Prozess  |2 gnd  |0 (DE-588)4134948-9 
650 1 7 |a Markov-processen.  |2 gtt 
650 1 7 |a Leerprocessen.  |2 gtt 
776 0 8 |i Print version:  |a Norman, M. Frank.  |t Markov processes and learning models.  |d New York : Academic Press, 1972  |z 9780125214506  |w (DLC) 70182638  |w (OCoLC)340291 
830 0 |a Mathematics in science and engineering ;  |v v. 84. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780125214506  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=00765392&volume=84  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/00765392/84  |z Texto completo