Dynamic programming : sequential scientific management /
Dynamic programming; sequential scientific management.
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés Francés |
Publicado: |
London ; New York :
Academic Press,
�1967.
|
Colección: | Mathematics in science and engineering ;
37. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn316563802 | ||
003 | OCoLC | ||
005 | 20231117015229.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090320s1967 enk ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d OPELS |d OCLCQ |d N$T |d OCLCQ |d OCLCF |d DEBBG |d E7B |d YDXCP |d OCLCQ |d COO |d OCLCQ |d DEBSZ |d AGLDB |d OCLCA |d OCLCQ |d VTS |d STF |d LEAUB |d M8D |d OCLCA |d VLY |d OCLCO |d OCLCQ |d OCLCO | ||
020 | |a 9780080955445 |q (electronic bk.) | ||
020 | |a 0080955444 |q (electronic bk.) | ||
020 | |a 9780124023505 |q (electronic bk.) | ||
020 | |a 0124023509 |q (electronic bk.) | ||
035 | |a (OCoLC)316563802 | ||
041 | 1 | |a eng |h fre | |
050 | 4 | |a T57.83 |b .D96 1967eb | |
072 | 7 | |a MAT |x 017000 |2 bisacsh | |
082 | 0 | 4 | |a 519.7/03 |2 22 |
245 | 0 | 0 | |a Dynamic programming : |b sequential scientific management / |c [edited by] A. Kaufmann [and] R. Cruon ; translated by Henry C. Sneyd. |
260 | |a London ; |a New York : |b Academic Press, |c �1967. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics in science and engineering ; |v 37 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; Dynamic Programming: Sequential Scientific Management; Copyright Page; Foreword to The French Edition; Contents; Preface to The French Edition; List of Principal Symbols; Chapter 1. Discrete Dynamic Programs With a Certain Future and a Limited Horizon; 1. General Introduction; 2. A Numerical Example; 3. Mathematical Model of a Discrete Dynamic Program with a Certain Future; 4. Interpretation by the Theory of Graphs. Multistage Graphs; 5. Explanation of Certain Difficulties in the Calculations; 6. A Numerical Example Which is Nonlinear | |
505 | 8 | |a 7. The Case where the Decision Variable Has More Dimensions than the State Variable8. Case where the Final and Initial States Are N o t Both Prescribed; 9. Comparison of the Four Methods; 10. Stationary Programs. Convergence. Permanent Policies; Chapter 2. Discrete Dynamic Programs With a Certain Future and an Unlimited Horizon; 11. Introduction; 12. Convergence by ''Narrowing" the Domain of Decision; 13. The Criterion of the Present Value; 14. Criterion of the Average Value per Period; Chapter 3. Discrete Dynamic Programs With a Random Future and Limited Horizon; 15. introduction | |
505 | 8 | |a 16. An Example of D.H. (D�ecision-Hasard) Dynamic Program17. Mathematical Model of a D.H. Dynamic Program. Decomposed Form; 18. Mathematical Model of an H. D. Dynamic Program. Decomposed Form; 19. Examples; Chapter 4. Discrete Dynamic Programs With a Random Future and Unlimited Horizon (General Case); 20. Introduction; 21. Criterion of the Expected Total Value; 22. Approximation in the Space of the Strategies; 23. Convergence of the Total Present Value of an Arbitrary Strategy; 24. Influence of the Initial State; 25. The Criterion of the Expected Total Value without Discounting | |
505 | 8 | |a 26. The Criterion of the Average Expected Value per Period27. Optimization of the Average Value per Period; Chapter 5. Discrete D.H. Dynamic Programs With Finite Markovian Chains; 28. Introduction; 29. Structure of Finite Markovian Chains; 30. Irreducible Finite Markovian Chain7; 31. The Generating Function (z-Transform); 32. Quantitative Study of Finite Markovian Chains; 33. Value of a Permanent Strategy; 34. Optimization of the Total Present Value; 35. Optimization of the Average Value per Period (or of the Total Value) | |
505 | 8 | |a 36. Optimization of the Average Value per Period in the Special Case of a Certain Future37. Decomposed Form; Chapter 6. Various Generalizations; 38. Introduction; 39. Nonsequential Structures; 40. Nonadditive Values; Bibliography; I. Theory; II. Practice; Subject Index; Mathematics in Science and Engineering | |
520 | |a Dynamic programming; sequential scientific management. | ||
650 | 0 | |a Dynamic programming. | |
650 | 6 | |a Programmation dynamique. |0 (CaQQLa)201-0030772 | |
650 | 7 | |a MATHEMATICS |x Linear & Nonlinear Programming. |2 bisacsh | |
650 | 7 | |a Dynamic programming |2 fast |0 (OCoLC)fst00900291 | |
700 | 1 | |a Kaufmann, A. |q (Arnold), |d 1911-1994. | |
700 | 1 | |a Cruon, R. | |
700 | 1 | |a Sneyd, Henry C. | |
776 | 0 | 8 | |i Print version: |t Dynamic programming. |d London ; New York : Academic Press, �1967 |z 9780124023505 |w (OCoLC)277915807 |
830 | 0 | |a Mathematics in science and engineering ; |v 37. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780124023505 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/publication?issn=00765392&volume=37 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/bookseries/00765392/37 |z Texto completo |