Cargando…

Dynamic programming : sequential scientific management /

Dynamic programming; sequential scientific management.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Kaufmann, A. (Arnold), 1911-1994, Cruon, R., Sneyd, Henry C.
Formato: Electrónico eBook
Idioma:Inglés
Francés
Publicado: London ; New York : Academic Press, �1967.
Colección:Mathematics in science and engineering ; 37.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn316563802
003 OCoLC
005 20231117015229.0
006 m o d
007 cr cnu---unuuu
008 090320s1967 enk ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OPELS  |d OCLCQ  |d N$T  |d OCLCQ  |d OCLCF  |d DEBBG  |d E7B  |d YDXCP  |d OCLCQ  |d COO  |d OCLCQ  |d DEBSZ  |d AGLDB  |d OCLCA  |d OCLCQ  |d VTS  |d STF  |d LEAUB  |d M8D  |d OCLCA  |d VLY  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9780080955445  |q (electronic bk.) 
020 |a 0080955444  |q (electronic bk.) 
020 |a 9780124023505  |q (electronic bk.) 
020 |a 0124023509  |q (electronic bk.) 
035 |a (OCoLC)316563802 
041 1 |a eng  |h fre 
050 4 |a T57.83  |b .D96 1967eb 
072 7 |a MAT  |x 017000  |2 bisacsh 
082 0 4 |a 519.7/03  |2 22 
245 0 0 |a Dynamic programming :  |b sequential scientific management /  |c [edited by] A. Kaufmann [and] R. Cruon ; translated by Henry C. Sneyd. 
260 |a London ;  |a New York :  |b Academic Press,  |c �1967. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics in science and engineering ;  |v 37 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; Dynamic Programming: Sequential Scientific Management; Copyright Page; Foreword to The French Edition; Contents; Preface to The French Edition; List of Principal Symbols; Chapter 1. Discrete Dynamic Programs With a Certain Future and a Limited Horizon; 1. General Introduction; 2. A Numerical Example; 3. Mathematical Model of a Discrete Dynamic Program with a Certain Future; 4. Interpretation by the Theory of Graphs. Multistage Graphs; 5. Explanation of Certain Difficulties in the Calculations; 6. A Numerical Example Which is Nonlinear 
505 8 |a 7. The Case where the Decision Variable Has More Dimensions than the State Variable8. Case where the Final and Initial States Are N o t Both Prescribed; 9. Comparison of the Four Methods; 10. Stationary Programs. Convergence. Permanent Policies; Chapter 2. Discrete Dynamic Programs With a Certain Future and an Unlimited Horizon; 11. Introduction; 12. Convergence by ''Narrowing" the Domain of Decision; 13. The Criterion of the Present Value; 14. Criterion of the Average Value per Period; Chapter 3. Discrete Dynamic Programs With a Random Future and Limited Horizon; 15. introduction 
505 8 |a 16. An Example of D.H. (D�ecision-Hasard) Dynamic Program17. Mathematical Model of a D.H. Dynamic Program. Decomposed Form; 18. Mathematical Model of an H. D. Dynamic Program. Decomposed Form; 19. Examples; Chapter 4. Discrete Dynamic Programs With a Random Future and Unlimited Horizon (General Case); 20. Introduction; 21. Criterion of the Expected Total Value; 22. Approximation in the Space of the Strategies; 23. Convergence of the Total Present Value of an Arbitrary Strategy; 24. Influence of the Initial State; 25. The Criterion of the Expected Total Value without Discounting 
505 8 |a 26. The Criterion of the Average Expected Value per Period27. Optimization of the Average Value per Period; Chapter 5. Discrete D.H. Dynamic Programs With Finite Markovian Chains; 28. Introduction; 29. Structure of Finite Markovian Chains; 30. Irreducible Finite Markovian Chain7; 31. The Generating Function (z-Transform); 32. Quantitative Study of Finite Markovian Chains; 33. Value of a Permanent Strategy; 34. Optimization of the Total Present Value; 35. Optimization of the Average Value per Period (or of the Total Value) 
505 8 |a 36. Optimization of the Average Value per Period in the Special Case of a Certain Future37. Decomposed Form; Chapter 6. Various Generalizations; 38. Introduction; 39. Nonsequential Structures; 40. Nonadditive Values; Bibliography; I. Theory; II. Practice; Subject Index; Mathematics in Science and Engineering 
520 |a Dynamic programming; sequential scientific management. 
650 0 |a Dynamic programming. 
650 6 |a Programmation dynamique.  |0 (CaQQLa)201-0030772 
650 7 |a MATHEMATICS  |x Linear & Nonlinear Programming.  |2 bisacsh 
650 7 |a Dynamic programming  |2 fast  |0 (OCoLC)fst00900291 
700 1 |a Kaufmann, A.  |q (Arnold),  |d 1911-1994. 
700 1 |a Cruon, R. 
700 1 |a Sneyd, Henry C. 
776 0 8 |i Print version:  |t Dynamic programming.  |d London ; New York : Academic Press, �1967  |z 9780124023505  |w (OCoLC)277915807 
830 0 |a Mathematics in science and engineering ;  |v 37. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780124023505  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=00765392&volume=37  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/00765392/37  |z Texto completo