Cargando…

Optimization techniques : with applications to aerospace systems /

Optimization techniques, with applications to aerospace systems.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Leitmann, George
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Academic Press, �1965.
Edición:3. print.
Colección:Mathematics in science and engineering ; 5.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn316563760
003 OCoLC
005 20231117015229.0
006 m o d
007 cr cn|||||||||
008 090320s1965 nyu ob 000 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OPELS  |d OCLCQ  |d OCLCF  |d OCLCO  |d DEBBG  |d OCLCQ  |d DEBSZ  |d OCLCA  |d LEAUB  |d ADU  |d VLY  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1112866085  |a 1160087399  |a 1162419524  |a 1241843250  |a 1300663041 
020 |a 9780124429505 
020 |a 0124429505 
020 |a 1282289977 
020 |a 9781282289970 
020 |a 9786612289972 
020 |a 661228997X 
020 |a 0080955134 
020 |a 9780080955131 
035 |a (OCoLC)316563760  |z (OCoLC)1112866085  |z (OCoLC)1160087399  |z (OCoLC)1162419524  |z (OCoLC)1241843250  |z (OCoLC)1300663041 
050 4 |a QA402.5  |b .O68 1965eb 
082 0 4 |a 629.4  |2 22 
245 0 0 |a Optimization techniques :  |b with applications to aerospace systems /  |c ed. by George Leitmann. 
250 |a 3. print. 
260 |a New York :  |b Academic Press,  |c �1965. 
300 |a 1 online resource (xiii, 453 pages) :  |b graph 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics in science and engineering ;  |v 5 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
505 0 |a Front Cover; Optimization Techniques: With Applications to Aerospace Systems; Copyright Page; Contents; Contributors; Foreword; Chapter 1. Theory of Maxima and Minima; 1.1 Necessary Conditions for Maxima or Minima; 1.2 Sufficient Conditions for Maxima or Minima; 1.3 Subsidiary Conditions; 1.4 Application to Integrals; 1.5 Remarks on Practical Application; 1.6 Optimization of Low Thrust Trajectories and Propulsion Systems for a 24-Hour Equatorial Satellite; References; Chapter 2. Direct Methods; 2.0 Introduction and Summary; 2.1 A Routine for Determining Some Optimum Trajectories 
505 8 |a 2.2 Elementary Graphic Solution2.3 Optimum Thrust Programming along a Given Curve; References; Chapter 3. Extremization of Linear Integrals by Green's Theorem; 3.1 Introduction; 3.2 Linear Problem; 3.3 Linear Isoperimetric Problem 70; 3.4 Linear Problems in Flight Mechanics; 3.5 Optimum Burning Program for a Short-Range, Nonlifting Missile; 3.6 Optimum Drag Modulation Program for the Re-Entry of a Variable- Geometry Ballistic Missile; References; Chapter 4. The Calculus of Variations in Applied Aerodynamics and Flight Mechanics; 4.1 Introduction; 4.2 The Problem of Bolza 
505 8 |a 4.3 Transformation of Variational Problems4.4 The Calculus of Variations in Applied Aerodynamics; 4.5 Bodies of Revolution Having Minimum Pressure Drag in Newtonian Flow; 4.6 Wings Having Minimum Pressure Drag in Linearized Supersonic Flow; 4.7 The Calculus of Variations in Flight Mechanics; 4.8 Optimum Trajectories for Rocket Flight in a Vacuum; 4.9 Optimum Trajectories for Rocket Flight in a Resisting Medium; 4.10 Conclusions; References; Chapter 5. Variational Problems with Bounded Control Variables; 5.0 Introduction; 5.1 Statement of the Problem; 5.2 Mass Flow Rate Limited Systems 
505 8 |a 5.3 Propulsive Power Limited Systems5.4 Thrust Acceleration Limited Systems; 5.5 Conclusions; 5.6 Example; Nomenclature; Appendix; References; Chapter 6. Methods of Gradients; 6.0 Introduction; 6.1 Gradient Technique in Ordinary Minimum Problems; 6.2 Gradient Technique in Flight Path Optimization Problems; 6.3 Solar Sailing Example; 6.4 Low-Thrust Example; 6.5 Remarks on the Relative Merits of Various Computational Techniques; 6.6 A Successive Approximation Scheme Employing the Min Operation; Appendix A; References; Chapter 7. Pontryagin Maximum Principle; 7.0 Introduction 
505 8 |a 7.1 An Introduction to the Pontryagin Maximum Principle7.2 The Adjoint System and the Pontryagin Maximum Principle; 7.3 The Calculus of Variations and the Pontryagin Maximum Principle; 7.4 Dynamic Programming and the Pontryagin Maximum Principle; 7.5 Examples; References; Chapter 8. On the Determination of Optimal Trajectories Via Dynamic Programming; 8.1 Introduction; 8.2 Dynamic Programming; 8.3 One-Dimensional Problems; 8.4 Constraints-I; 8.5 Constraints-II; 8.6 Discussion; 8.7 Two-Dimensional Problems; 8.8 One-Dimensional Case; 8.9 Discussion; 8.10 Two-Dimensional Case; 8.11 Discussion 
520 |a Optimization techniques, with applications to aerospace systems. 
546 |a English. 
650 0 |a Mathematical optimization. 
650 0 |a System analysis. 
650 2 |a Systems Analysis  |0 (DNLM)D013597 
650 6 |a Optimisation math�ematique.  |0 (CaQQLa)201-0007680 
650 6 |a Analyse de syst�emes.  |0 (CaQQLa)201-0007674 
650 7 |a systems analysis.  |2 aat  |0 (CStmoGRI)aat300077662 
650 7 |a Mathematical optimization  |2 fast  |0 (OCoLC)fst01012099 
650 7 |a System analysis  |2 fast  |0 (OCoLC)fst01141385 
655 4 |a Aufsatzsammlung  |x Optimale Kontrolle. 
655 4 |a Aufsatzsammlung  |x Optimierung. 
700 1 |a Leitmann, George. 
776 0 8 |i Print version:  |t Optimization techniques.  |b 3. print.  |d New York : Academic Press, �1965  |z 0124429505  |z 9780124429505  |w (OCoLC)256220811 
830 0 |a Mathematics in science and engineering ;  |v 5. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780124429505  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=00765392&volume=5  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/00765392/5  |z Texto completo