Foundations of analysis over surreal number fields /
In this volume, a tower of surreal number fields is defined, each being a real-closed field having a canonical formal power series structure and many other higher order properties. Formal versions of such theorems as the Implicit Function Theorem hold over such fields. The Main Theorem states that e...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; New York : New York, N.Y., U.S.A. :
North-Holland ; Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.,
1987.
|
Colección: | North-Holland mathematics studies ;
141. Notas de matem�atica (Rio de Janeiro, Brazil) ; no. 117. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn316553001 | ||
003 | OCoLC | ||
005 | 20231117015225.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 090320s1987 ne ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d OPELS |d OCLCQ |d OCLCF |d OCLCO |d DEBBG |d N$T |d IDEBK |d E7B |d UA@ |d OCLCE |d YDXCP |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCO |d LEAUB |d ADU |d LUN |d S2H |d OCLCO |d OCLCQ |d OCLCO |d OCL |d OCLCQ |d OCLCO | ||
019 | |a 312403311 |a 646774103 |a 802299825 |a 823839783 |a 823907714 |a 824096930 |a 824149821 |a 1086437150 |a 1160078365 | ||
020 | |a 9780444702265 | ||
020 | |a 0444702261 | ||
020 | |a 9780080872520 |q (electronic bk.) | ||
020 | |a 0080872522 |q (electronic bk.) | ||
020 | |a 1281798053 | ||
020 | |a 9781281798053 | ||
035 | |a (OCoLC)316553001 |z (OCoLC)312403311 |z (OCoLC)646774103 |z (OCoLC)802299825 |z (OCoLC)823839783 |z (OCoLC)823907714 |z (OCoLC)824096930 |z (OCoLC)824149821 |z (OCoLC)1086437150 |z (OCoLC)1160078365 | ||
042 | |a dlr | ||
050 | 4 | |a QA1 |b .N86 no. 117eb | |
050 | 4 | |a QA241 |b .A45 1987eb | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
072 | 7 | |a PBF |2 bicssc | |
082 | 0 | 4 | |a 510 |2 22 |
082 | 0 | 4 | |a 512/.3 |2 22 |
084 | |a SI 867 |2 rvk | ||
084 | |a MAT 260f |2 stub | ||
100 | 1 | |a Alling, Norman L. | |
245 | 1 | 0 | |a Foundations of analysis over surreal number fields / |c Norman L. Alling. |
260 | |a Amsterdam ; |a New York : |b North-Holland ; |a New York, N.Y., U.S.A. : |b Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., |c 1987. | ||
300 | |a 1 online resource (xvi, 373 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a North-Holland mathematics studies ; |v 141 | |
490 | 1 | |a Notas de matem�atica ; |v 117 | |
520 | |a In this volume, a tower of surreal number fields is defined, each being a real-closed field having a canonical formal power series structure and many other higher order properties. Formal versions of such theorems as the Implicit Function Theorem hold over such fields. The Main Theorem states that every formal power series in a finite number of variables over a surreal field has a positive radius of hyper-convergence within which it may be evaluated. Analytic functions of several surreal and surcomplex variables can then be defined and studied. Some first results in the one variable case are derived. A primer on Conway's field of surreal numbers is also given. Throughout the manuscript, great efforts have been made to make the volume fairly self-contained. Much exposition is given. Many references are cited. While experts may want to turn quickly to new results, students should be able to find the explanation of many elementary points of interest. On the other hand, many new results are given, and much mathematics is brought to bear on the problems at hand. | ||
504 | |a Includes bibliographical references (pages 353-358) and index. | ||
588 | 0 | |a Print version record. | |
506 | |3 Use copy |f Restrictions unspecified |2 star |5 MiAaHDL | ||
533 | |a Electronic reproduction. |b [Place of publication not identified] : |c HathiTrust Digital Library, |d 2011. |5 MiAaHDL | ||
538 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |u http://purl.oclc.org/DLF/benchrepro0212 |5 MiAaHDL | ||
583 | 1 | |a digitized |c 2011 |h HathiTrust Digital Library |l committed to preserve |2 pda |5 MiAaHDL | |
650 | 0 | |a Surreal numbers. | |
650 | 0 | |a Algebraic fields. | |
650 | 0 | |a Mathematical analysis. | |
650 | 0 | |a Algebraic stacks. | |
650 | 6 | |a Nombres surr�eels. |0 (CaQQLa)201-0161353 | |
650 | 6 | |a Corps alg�ebriques. |0 (CaQQLa)201-0010087 | |
650 | 6 | |a Analyse math�ematique. |0 (CaQQLa)201-0001156 | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Algebraic stacks |2 fast |0 (OCoLC)fst00804940 | |
650 | 7 | |a Algebraic fields |2 fast |0 (OCoLC)fst00804931 | |
650 | 7 | |a Mathematical analysis |2 fast |0 (OCoLC)fst01012068 | |
650 | 7 | |a Surreal numbers |2 fast |0 (OCoLC)fst01139537 | |
650 | 7 | |a Zahlk�orper |2 gnd |0 (DE-588)4067273-6 | |
650 | 7 | |a Corps alg�ebriques. |2 ram | |
650 | 7 | |a Analyse math�ematique. |2 ram | |
653 | |a Algebraic number fields | ||
655 | 7 | |a Surrealer Zahlk�orper. |2 swd | |
776 | 0 | 8 | |i Print version: |a Alling, Norman L. |t Foundations of analysis over surreal number fields. |d Amsterdam ; New York : North-Holland ; New York, N.Y., U.S.A. : Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., 1987 |z 0444702261 |z 9780444702265 |w (DLC) 87006735 |w (OCoLC)15629532 |
830 | 0 | |a North-Holland mathematics studies ; |v 141. | |
830 | 0 | |a Notas de matem�atica (Rio de Janeiro, Brazil) ; |v no. 117. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780444702265 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/publication?issn=03040208&volume=141 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/bookseries/03040208/141 |z Texto completo |