Cargando…

Theory of partial differential equations /

Theory of partial differential equations.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lieberstein, H. Melvin
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Academic Press, 1972.
Colección:Mathematics in science and engineering ; v. 93.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn316552945
003 OCoLC
005 20231117015223.0
006 m o d
007 cr cnu---unuuu
008 090320s1972 nyua ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d N$T  |d EBLCP  |d IDEBK  |d OCLCQ  |d TEF  |d OPELS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d E7B  |d OCLCF  |d DEBBG  |d OCLCQ  |d NLGGC  |d YDXCP  |d OCLCQ  |d DEBSZ  |d AGLDB  |d OCLCQ  |d VTS  |d STF  |d LEAUB  |d M8D  |d OCLCQ  |d OCLCO  |d SGP  |d OCLCQ 
019 |a 646827719  |a 823843621  |a 823912383  |a 824099392  |a 824154815 
020 |a 9780124495500  |q (electronic bk.) 
020 |a 0124495508  |q (electronic bk.) 
020 |a 9780080956022  |q (electronic bk.) 
020 |a 0080956025  |q (electronic bk.) 
020 |a 1282290398 
020 |a 9781282290396 
035 |a (OCoLC)316552945  |z (OCoLC)646827719  |z (OCoLC)823843621  |z (OCoLC)823912383  |z (OCoLC)824099392  |z (OCoLC)824154815 
050 4 |a QA374  |b .L45 1972eb 
072 7 |a MAT  |x 007020  |2 bisacsh 
072 7 |a GPF  |2 bicssc 
082 0 4 |a 515/.353  |2 22 
100 1 |a Lieberstein, H. Melvin. 
245 1 0 |a Theory of partial differential equations /  |c H. Melvin Lieberstein. 
260 |a New York :  |b Academic Press,  |c 1972. 
300 |a 1 online resource (xiv, 283 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics in science and engineering ;  |v v. 93 
504 |a Includes bibliographical references (pages 264-266) and index. 
588 0 |a Print version record. 
520 |a Theory of partial differential equations. 
505 0 |a Front Cover; Theory of Partial Differential Equations; Copyright Page; Contents; PREFACE; PART I: AN OUTLINE; Chapter 1. The Theory of Characteristics, Classification, and the Wave Equation in E2; 1. D' Alembert Solution of the Cauchy Problem for the Homogeneous Wave Equation in E2; 2. Nomenclature; 3. Theory of Characteristics and Type Classification for Equations in E2; 4. Considerations Special to Nonlinear Cases; 5. Compatibility Relations and the Finite-Difference Method of Characteristics; 6. Systems Larger Than Two by Two; 7. Flow and Transmission Line Equations 
505 8 |a Chapter 2. Various Boundary-Value Problems for the Homogeneous Wave Equation in E21. The Cauchy or Initial-Value Problem; 2. The Characteristic Boundary-Value Problem; 3. The Mixed Boundary-Value Problem; 4. The Goursat Problem; 5. The Vibrating String Problem; 6. Uniqueness of the Vibrating String Problem; 7. The Dirichlet Problem for the Wave Equation?; Chapter 3. Various Boundary-Value Problems for the Laplace Equation in E2; 1. The Dirichlet Problem; 2. Relation to Analytic Functions of a Complex Variable; 3. Solution of the Dirichlet Problem on a Circle 
505 8 |a 4. Uniqueness for Regular Solutions of the Dirichlet and Neumann Problem on a Rectangle5. Approximation Methods for the Dirichlet Problem in E2; 6. The Cauchy Problem for the Laplace Equation; Chapter 4. Various Boundary-Value Problems for Simple Equations of Parabolic Type; 1. The Slab Problem; 2. An Alternative Proof of Uniqueness; 3. Solution by Separation of Variables; 4. Instability for Negative Times; 5. Cauchy Problem on the Infinite Line; 6. Unique Continuation; 7. Poiseuille Flow; 8. Mean-Square Asymptotic Uniqueness 
505 8 |a 9. Solution of a Dirichlet Problem for an Equation of Parabolic TypeChapter 5. Expectations for Well-Posed Problems; 1. Sense of Hadamard; 2. Expectations; 3. Boundary-Value Problems for Equations of Elliptic-Parabolic Type; 4. Existence as the Limit of Regular Solutions; 5. The Impulse Problem as a Prototype of a Solution in Terms of Distributions; 6. The Green Identities; 7. The Generalized Green Identity; 8. Lp-Weak Solutions; 9. Prospectus; 10. The Tricomi Problem; PART II: SOME CLASSICAL RESULTS FOR NONLINEAR EQUATIONS IN TWO INDEPENDENT VARIABLES 
505 8 |a Chapter 6. Existence and Uniqueness Considerations for the Nonhomogeneous Wave Equation in E21. Notation; 2. Existence for the Characteristic Problem; 3. Comments on Continuous Dependence and Error Bounds; 4. An Example Where the Theorem as Stated Does Not Apply; 5. A Theorem Using the Lipschitz Condition on a Bounded Region in E5; 6. Existence Theorem for the Cauchy Problem of the Nonhomogeneous (Nonlinear) Wave Equation in E2; Chapter 7. The Riemann Method; 1. Three Forms of the Generalized Green Identity; 2. Riemann's Function 
650 0 |a Differential equations, Partial. 
650 6 |a �Equations aux d�eriv�ees partielles.  |0 (CaQQLa)201-0012495 
650 7 |a MATHEMATICS  |x Differential Equations  |x Partial.  |2 bisacsh 
650 7 |a Differential equations, Partial.  |2 fast  |0 (OCoLC)fst00893484 
776 0 8 |i Print version:  |a Lieberstein, H. Melvin.  |t Theory of partial differential equations.  |d New York, Academic Press, 1972  |z 9780124495500  |w (DLC) 72084278  |w (OCoLC)482715 
830 0 |a Mathematics in science and engineering ;  |v v. 93. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780124495500  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=00765392&volume=93  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/00765392/93  |z Texto completo