Cargando…

Discrete optimization /

The chapters of this Handbook volume covers nine main topics that are representative of recent theoretical and algorithmic developments in the field. In addition to the nine papers that present the state of the art, there is an article on the early history of the field. The handbook will be a useful...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Aardal, K. (Karen) (Editor ), Nemhauser, George L. (Editor ), Weismantel, Robert (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier, 2005.
Edición:1st ed.
Colección:Handbooks in operations research and management science ; v. 12.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn227117250
003 OCoLC
005 20231117044701.0
006 m o d
007 cr bn|||||||||
008 080506s2005 ne ob 001 0 eng d
040 |a UCW  |b eng  |e pn  |c UCW  |d N$T  |d YDXCP  |d MERUC  |d UBY  |d E7B  |d OCLCQ  |d IDEBK  |d OCLCQ  |d OPELS  |d TEF  |d OCLCQ  |d OCLCF  |d OCLCQ  |d DEBSZ  |d UPM  |d FIE  |d OCLCQ  |d U3W  |d D6H  |d WYU  |d YOU  |d SOI  |d OCLCO  |d LEAUB  |d OCLCO  |d OCLCQ  |d DCT  |d OCLCO  |d ERF  |d OCLCO  |d WURST  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ  |d K6U  |d OCLCQ  |d INARC  |d OCLCO 
015 |a GBA476971  |2 bnb 
019 |a 75190863  |a 144220175  |a 441764166  |a 505057892  |a 647545753  |a 772910106  |a 1162454475 
020 |a 0444515070  |q (hbk.) 
020 |a 9780444515070  |q (hbk.) 
020 |a 0080459218  |q (electronic bk.) 
020 |a 9780080459219  |q (electronic bk.) 
020 |a 1280638117 
020 |a 9781280638114 
020 |a 9786610638116 
020 |a 661063811X 
024 3 |z 9780444515070 
035 |a (OCoLC)227117250  |z (OCoLC)75190863  |z (OCoLC)144220175  |z (OCoLC)441764166  |z (OCoLC)505057892  |z (OCoLC)647545753  |z (OCoLC)772910106  |z (OCoLC)1162454475 
050 4 |a QA402.5  |b .D57 2005a 
072 7 |a MAT  |x 042000  |2 bisacsh 
082 0 4 |a 519.6  |2 22 
245 0 0 |a Discrete optimization /  |c edited by K. Aardal, G.L. Nemhauser and R. Weismantel. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a Boston :  |b Elsevier,  |c 2005. 
300 |a 1 online resource (xi, 607 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Handbooks in operations research and management science,  |x 0927-0507 ;  |v v. 12 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
505 0 |a On the history of combinatorial optimization (till 1960) -- Computational integer programming and cutting planes -- The structure of group relaxations -- Integer programming, lattices, and results in fixed dimension -- Primal integer programming -- Balanced matrices -- Submodular function minimization -- Semidefinite programming and integer programming -- Algorithms for stochastic mixed-integer programming models -- Constraint programming. 
520 |a The chapters of this Handbook volume covers nine main topics that are representative of recent theoretical and algorithmic developments in the field. In addition to the nine papers that present the state of the art, there is an article on the early history of the field. The handbook will be a useful reference to experts in the field as well as students and others who want to learn about discrete optimization. All of the chapters in this handbook are written by authors who have made significant original contributions to their topics. Herewith a brief introduction to the chapters of the handbook. "On the history of combinatorial optimization (until 1960)" goes back to work of Monge in the 18th century on the assignment problem and presents six problem areas: assignment, transportation, maximum flow, shortest tree, shortest path and traveling salesman. The branch-and-cut algorithm of integer programming is the computational workhorse of discrete optimization. It provides the tools that have been implemented in commercial software such as CPLEX and Xpress MP that make it possible to solve practical problems in supply chain, manufacturing, telecommunications and many other areas. "Computational integer programming and cutting planes" presents the key ingredients of these algorithms. Although branch-and-cut based on linear programming relaxation is the most widely used integer programming algorithm, other approaches are needed to solve instances for which branch-and-cut performs poorly and to understand better the structure of integral polyhedra. The next three chapters discuss alternative approaches. "The structure of group relaxations" studies a family of polyhedra obtained by dropping certain nonnegativity restrictions on integer programming problems. Although integer programming is NP-hard in general, it is polynomially solvable in fixed dimension. "Integer programming, lattices, and results in fixed dimension" presents results in this area including algorithms that use reduced bases of integer lattices that are capable of solving certain classes of integer programs that defy solution by branch-and-cut. Relaxation or dual methods, such as cutting plane algorithms, progressively remove infeasibility while maintaining optimality to the relaxed problem. Such algorithms have the disadvantage of possibly obtaining feasibility only when the algorithm terminates. Primal methods for integer programs, which move from a feasible solution to a better feasible solution, were studied in the 1960's but did not appear to be competitive with dual methods. However, recent development in primal methods presented in "Primal integer programming" indicate that this approach is not just interesting theoretically but may have practical implications as well. The study of matrices that yield integral polyhedra has a long tradition in integer programming. A major breakthrough occurred in the 1990's with the development of polyhedral and structural results and recognition algorithms for balanced matrices. "Balanced matrices" is a tutorial on the subject. Submodular function minimization generalizes some linear combinatorial optimization problems such as minimum cut and is one of the fundamental problems of the field that is solvable in polynomial time. "Submodular function minimization" presents the theory and algorithms of this subject. In the search for tighter relaxations of combinatorial optimization problems, semidefinite programming provides a generalization of linear programming that can give better approximations and is still polynomially solvable. This subject is discussed in "Semidefinite programming and integer programming". Many real world problems have uncertain data that is known only probabilistically. Stochastic programming treats this topic, but until recently it was limited, for computational reasons, to stochastic linear programs. Stochastic integer programming is now a high profile research area and recent developments are presented in "Algorithms for stochastic mixed-integer programming models". Resource constrained scheduling is an example of a class of combinatorial optimization problems that is not naturally formulated with linear constraints so that linear programming based methods do not work well. "Constraint programming" presents an alternative enumerative approach that is complementary to branch-and-cut. Constraint programming, primarily designed for feasibility problems, does not use a relaxation to obtain bounds. Instead nodes of the search tree are pruned by constraint propagation, which tightens bounds on variables until their values are fixed or their domains are shown to be empty 
546 |a English. 
650 0 |a Mathematical optimization. 
650 0 |a Integer programming. 
650 6 |a Optimisation math�ematique.  |0 (CaQQLa)201-0007680 
650 6 |a Programmation en nombres entiers.  |0 (CaQQLa)201-0030774 
650 7 |a MATHEMATICS  |x Optimization.  |2 bisacsh 
650 7 |a Integer programming  |2 fast  |0 (OCoLC)fst00975500 
650 7 |a Mathematical optimization  |2 fast  |0 (OCoLC)fst01012099 
650 7 |a Diskrete Optimierung  |2 gnd  |0 (DE-588)4150179-2 
653 0 0 |a programmeren 
653 0 0 |a programming 
653 0 0 |a operationeel onderzoek 
653 0 0 |a operations research 
653 0 0 |a algoritmen 
653 0 0 |a algorithms 
653 0 0 |a optimalisatie 
653 0 0 |a optimization 
653 0 0 |a integer programmeren 
653 0 0 |a integer programming 
653 0 0 |a modelleren 
653 0 0 |a modeling 
653 0 0 |a discrete simulatie 
653 0 0 |a discrete simulation 
653 1 0 |a Operations Research 
653 2 0 |a Programming, Programming Languages 
653 1 0 |a Operationeel onderzoek 
653 2 0 |a Programmeren, programmeertalen 
700 1 |a Aardal, K.  |q (Karen)  |4 edt 
700 1 |a Nemhauser, George L.  |4 edt 
700 1 |a Weismantel, Robert.  |4 edt 
776 0 8 |i Print version:  |t Discrete optimization.  |b 1st ed.  |d Amsterdam ; Boston : Elsevier, 2005  |w (OCoLC)56875489 
830 0 |a Handbooks in operations research and management science ;  |v v. 12.  |x 0927-0507 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444515070  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/handbooks/09270507/12  |z Texto completo