Cargando…

Data processing and reconciliation for chemical process operations /

Computer techniques have made online measurements available at every sampling period in a chemical process. However, measurement errors are introduced that require suitable techniques for data reconciliation and improvements in accuracy. Reconciliation of process data and reliable monitoring are ess...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Romagnoli, Jos�e A. (Jos�e Alberto)
Otros Autores: S�anchez, Mabel Cristina
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Academic Press, �2000.
Colección:Process systems engineering ; v. 2.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn182553351
003 OCoLC
005 20231117014943.0
006 m o d
007 cr cnu---unuuu
008 071128s2000 caua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d OCLCO  |d NLGGC  |d OCLCO  |d OCLCQ  |d OCLCO  |d OPELS  |d OCLCQ  |d DEBSZ  |d AGLDB  |d OCLCQ  |d STF  |d D6H  |d OCLCQ  |d VTS  |d OCLCQ  |d LEAUB  |d M8D  |d VLY  |d OCLCQ  |d OCLCO  |d DST  |d OCLCQ  |d OCLCO 
019 |a 162576546  |a 647688770  |a 742285282  |a 815530192  |a 823108973  |a 823829502  |a 823899205  |a 824090480  |a 824138071  |a 1035650456  |a 1162206995  |a 1241858430  |a 1300482294  |a 1303314232  |a 1303436533 
020 |a 9780080530277  |q (electronic bk.) 
020 |a 0080530273  |q (electronic bk.) 
020 |a 1281049867 
020 |a 9781281049865 
020 |a 9786611049867 
020 |a 661104986X 
020 |z 0125944608  |q (acid-free paper) 
020 |z 9780125944601 
035 |a (OCoLC)182553351  |z (OCoLC)162576546  |z (OCoLC)647688770  |z (OCoLC)742285282  |z (OCoLC)815530192  |z (OCoLC)823108973  |z (OCoLC)823829502  |z (OCoLC)823899205  |z (OCoLC)824090480  |z (OCoLC)824138071  |z (OCoLC)1035650456  |z (OCoLC)1162206995  |z (OCoLC)1241858430  |z (OCoLC)1300482294  |z (OCoLC)1303314232  |z (OCoLC)1303436533 
050 4 |a TP155.75  |b .R65 2000eb 
072 7 |a TEC  |x 009010  |2 bisacsh 
072 7 |a SCI  |x 013060  |2 bisacsh 
072 7 |a TD  |2 bicssc 
082 0 4 |a 660/.2815  |2 22 
100 1 |a Romagnoli, Jos�e A.  |q (Jos�e Alberto) 
245 1 0 |a Data processing and reconciliation for chemical process operations /  |c Jos�e A. Romagnoli, Mabel Cristina S�anchez. 
260 |a San Diego :  |b Academic Press,  |c �2000. 
300 |a 1 online resource (xv, 270 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Process systems engineering ;  |v v. 2 
504 |a Includes bibliographical references and indexes. 
588 0 |a Print version record. 
505 0 |a General Introduction. Reliable and Complete Knowledge. Some Issues Associated with a General Data Reconciliation Problem. About This Book. References of Chapter 1. Estimability and Redundancy Within the Framework of the General Estimation Theory. Introduction. Basic Concepts and Definitions. Decomposition of the General Estimation Problem. Structural Analysis. Conclusions. Notation. References of Chapter 2. Appendix 2 -- A. Classification of the Process Variables for Chemical Plants. Introduction. Modeling Aspects. Classification of Process Variables. Analysis of the Process Topology. Different Approaches for Solving the Classification Problem. Use of Output Set Assignments for Variable Classification. The Solution of Special Problems. A Complete Classification Example. Formulation of a Reduced Reconciliation Problem. Conclusions. Notation. References of Chapter 3. Appendix 3 -- A. Appendix 3 -- B. Decomposition Using Orthogonal Transformations. Introduction. Linear Mass Balances. Bilinear Multicomponent and Energy Balances. Conclusions. Notation. References of Chapter 4. Steady State Data Reconciliation. Introduction. Problem Formulation. Linear Data Reconciliation. Non-Linear Data Reconciliation. Conclusions. Notation. References of Chapter 5. Appendix 5 -- A. Sequential Processing of the Information. Introduction. Sequential Processing of the Constraints. Sequential Processing of the Measurements. Alternative Formulation from Estimation Theory. Conclusions. Notation. References of Chapter 6. Appendix 6 -- A. Treatment of Gross Errors. Introduction. Gross Error detection. Identification of the Measurements with Gross Error. Estimation of the Magnitude of Bias and Leaks. A Recursive Scheme for Gross Error Identification and Estimation. Conclusions. Notation. References of Chapter 7. Appendix 7 -- A. Appendix 7 -- B. Rectification of Process Measurement Data in Dynamic Situations. Introduction. Dynamic Data Reconciliation: A Filtering Approach. Dynamic Data Reconciliation: Using Non-linear Programming Techniques. Conclusions. Notation. References of Chapter 8. Joint Parameter Estimation Data Reconciliation. Introduction. The Parameter Estimation Problem. Joint Parameter Estimation-Data Reconciliation Problem. Dynamic Joint State-Parameter Estimation: A Filtering Approach. Dynamic Joint State-Parameter Estimation: A Non-linear Programming Approach. Conclusions. Notation. References of Chapter 9. Estimation of Measurement Error Variances from Process Data. Introduction. Direct Method. Indirect Method. Robust Covariance Estimator. Conclusions. Notation. References of Chapter 10. New Trends. Introduction. The Bayesian Approach. Robust Estimation Approaches. Principal Component Analysis in Data Reconciliation. Conclusions. Notation. References of Chapter 11. Case Studies. Introduction. Decomposition/Reconciliation in a Section of an Olefine Plant. Data Reconciliation of a Pyrolysis Reactor. Data Reconciliation of an Experimental Distillation Column. Conclusions. Notation. References of Chapter 12. Statistical Concepts. A1 -- Frequency Distributions. A2 -- Measures of Central Tendency and Spread. A3 -- Estimation. A4 -- Confidende Intervals. A5 -- Testing of Statistical Hypotheses. References of Appendix. 
520 |a Computer techniques have made online measurements available at every sampling period in a chemical process. However, measurement errors are introduced that require suitable techniques for data reconciliation and improvements in accuracy. Reconciliation of process data and reliable monitoring are essential to decisions about possible system modifications (optimization and control procedures), analysis of equipment performance, design of the monitoring system itself, and general management planning. While the reconciliation of the process data has been studied for more than 20 years, there is no single source providing a unified approach to the area with instructions on implementation. Data Processing and Reconciliation for Chemical Process Operations is that source. Competitiveness on the world market as well as increasingly stringent environmental and product safety regulations have increased the need for the chemical industry to introduce such fast and low cost improvements in process operations. Key Features * Introduces the first unified approach to this important field * Bridges theory and practice through numerous worked examples and industrial case studies * Provides a highly readable account of all aspects of data classification and reconciliation * Presents the reader with material, problems, and directions for further study. 
546 |a English. 
650 0 |a Chemical process control  |x Automation. 
650 0 |a Automatic data collection systems. 
650 0 |a Error analysis (Mathematics) 
650 0 |a Chemical processes. 
650 0 |a Chemical process control. 
650 6 |a Proc�ed�es chimiques  |0 (CaQQLa)201-0033775  |x Contr�ole  |0 (CaQQLa)201-0033775  |x Automatisation.  |0 (CaQQLa)201-0378787 
650 6 |a Collecte automatique des donn�ees.  |0 (CaQQLa)201-0036434 
650 6 |a Th�eorie des erreurs.  |0 (CaQQLa)201-0015082 
650 6 |a Proc�ed�es chimiques.  |0 (CaQQLa)201-0037239 
650 6 |a Proc�ed�es chimiques  |x Contr�ole.  |0 (CaQQLa)201-0033775 
650 7 |a TECHNOLOGY & ENGINEERING  |x Chemical & Biochemical.  |2 bisacsh 
650 7 |a SCIENCE  |x Chemistry  |x Industrial & Technical.  |2 bisacsh 
650 7 |a Automatic data collection systems  |2 fast  |0 (OCoLC)fst00822733 
650 7 |a Chemical process control  |2 fast  |0 (OCoLC)fst00853144 
650 7 |a Chemical process control  |x Automation  |2 fast  |0 (OCoLC)fst00853145 
650 7 |a Chemical processes  |2 fast  |0 (OCoLC)fst00853156 
650 7 |a Error analysis (Mathematics)  |2 fast  |0 (OCoLC)fst00915028 
700 1 |a S�anchez, Mabel Cristina. 
776 0 8 |i Print version:  |a Romagnoli, Jos�e A. (Jos�e Alberto).  |t Data processing and reconciliation for chemical process operations.  |d San Diego : Academic Press, �2000  |z 0125944608  |z 9780125944601  |w (DLC) 99060407  |w (OCoLC)42954362 
830 0 |a Process systems engineering ;  |v v. 2. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780125944601  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/18745970/2  |z Texto completo