Soft computing and intelligent data analysis in oil exploration /
This comprehensive book highlights soft computing and geostatistics applications in hydrocarbon exploration and production, combining practical and theoretical aspects. It spans a wide spectrum of applications in the oil industry, crossing many discipline boundaries such as geophysics, geology, petr...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Boston :
Elsevier,
2003.
|
Edición: | 1st ed. |
Colección: | Developments in petroleum science ;
51. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
Tabla de Contenidos:
- Cover
- Contents
- Foreword
- Preface
- About the Editors
- List of Contributors
- Part 1: Introduction: Fundamentals of Soft Computing
- CHAPTER 1. SOFT COMPUTING FOR INTELLIGENT RESERVOIR CHARACTERIZATION AND MODELING
- Abstract
- 1. Introduction
- 2. The role of soft computing techniques for intelligent reservoir characterization and exploration
- 3. Artificial neural network and geoscience applications of artificial neural networks for exploration
- 4. Fuzzy logic
- 5. Genetics algorithms
- 6. Principal component analysis and wavelet
- 7. Intelligent reservoir characterization
- 8. Fractured reservoir characterization
- 9. Future trends and conclusions
- Appendix A.A basic primer on neural network and fuzzy logic terminology
- Appendix B. Neural networks
- Appendix C. Modified Levenberge-Marquardt technique
- Appendix D. Neuro-fuzzy models
- Appendix E. K-means clustering
- Appendix F. Fuzzy c-means clustering
- Appendix G. Neural network clustering
- References
- CHAPTER 2. FUZZY LOGIC
- Abstract
- CHAPTER 3. INTRODUCTION TO USING GENETIC ALGORITHMS
- 1. Introduction
- 2. Background to Genetic Algorithms
- 3. Design of a Genetic Algorithm
- 4. Conclusions
- References
- CHAPTER 4. HEURISTIC APPROACHES TO COMBINATORIAL OPTIMIZATION
- 1. Introduction
- 2. Decision variables
- 3. Properties of the objective function
- 4. Heuristic techniques
- References
- CHAPTER 5. INTRODUCTION TO GEOSTATISTICS
- 1. Introduction
- 2. Random variables
- 3. Covariance and spatial variability
- 4. Kriging
- 5. Stochastic simulations
- References
- CHAPTER 6. GEOSTATISTICS: FROM PATTERN RECOGNITION TO PATTERN REPRODUCTION
- 1. Introduction
- 2. The decision of stationarity
- 3. The multi-Gaussian approach to spatial estimation and simulation
- 4. Spatial interpolation with kriging
- 5. Beyond two-point models: multiple-point geostatistics
- 6. Conclusions
- 7. Glossary
- References
- Part 2: Geophysical Analysis and Interpretation
- CHAPTER 7. MINING AND FUSION OF PETROLEUM DATA WITH FUZZY LOGIC AND NEURAL NETWORK AGENTS
- Abstract
- 1. Introduction
- 2. Neural network and nonlinear mapping
- 3. Neuro-fuzzy model for rule extraction
- 4. Conclusion
- Appendix A. Basic primer on neural network and fuzzy logic terminology
- Appendix B. Neural networks
- Appendix C. Modified Levenberge-Marquardt technique
- Appendix D. Neuro-fuzzy models
- Appendix E. K-means clustering
- References
- CHAPTER 8. TIME LAPSE SEISMIC AS A COMPLEMENTARY TOOL FOR IN-FILL DRILLING
- Abstract
- 1. Introduction
- 2. Feasibility study
- 3. 3D seismic data sets
- 4. 4D seismic analysis approach
- 5. Seismic modeling of various flow scenarios
- 6. 4D seismic for detecting fluid movement
- 7. 4D seismic for detecting pore pressure changes
- 8. 4D seismic and interaction with the drilling program
- 9. Conclusions
- Acknowledgements
- References
- CHAPTER.