Cargando…

Handbook of complex analysis : geometric function theory. Volume 1 /

Geometric Function Theory is a central part of Complex Analysis (one complex variable). The Handbook of Complex Analysis - Geometric Function Theory deals with this field and its many ramifications and relations to other areas of mathematics and physics. The theory of conformal and quasiconformal ma...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: K�uhnau, Reiner (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : North Holland/Elsevier, 2002.
Edición:1st ed.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo
Texto completo
Tabla de Contenidos:
  • Preface
  • List of Contributors
  • Univalent and multivalent functions (W.K. Hayman)
  • Conformal maps at the boundary (Ch. Pommerenke)
  • Extremal quasiconformal mapings of the disk (E. Reich)
  • Conformal welding (D.H. Hamilton)
  • Siegel disks and geometric function theory in the work of Yoccoz (D.H. Hamilton)
  • Sufficient confidents for univalence and quasiconformal extendibility of analytic functions (L.A. Aksent'ev, P.L. Shabalin)
  • Bounded univalent functions (D.V. Prokhorov)
  • The *-function in complex analysis (A. Baernstein II)
  • Logarithmic geometry, exponentiation, and coefficient bounds in the theory of univalent functions and nonoverlapping domains (A.Z. Grinshpan)
  • Circle packing and discrete analytic function theory (K. Stephenson)
  • Extreme points and support points (T.H. MacGregory, D.R. Wilken)
  • The method of the extremal metric (J.A. Jenkins)
  • Universal Teichm�uller space (F.P. Gardiner, W.J. Harvey)
  • Application of conformal and quasiconformal mappings and their properties in approximation theory (V.V. Andrievskii)
  • Author Index
  • Subject Index.