Handbook of complex analysis : geometric function theory. Volume 1 /
Geometric Function Theory is a central part of Complex Analysis (one complex variable). The Handbook of Complex Analysis - Geometric Function Theory deals with this field and its many ramifications and relations to other areas of mathematics and physics. The theory of conformal and quasiconformal ma...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Boston :
North Holland/Elsevier,
2002.
|
Edición: | 1st ed. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo Texto completo |
Tabla de Contenidos:
- Preface
- List of Contributors
- Univalent and multivalent functions (W.K. Hayman)
- Conformal maps at the boundary (Ch. Pommerenke)
- Extremal quasiconformal mapings of the disk (E. Reich)
- Conformal welding (D.H. Hamilton)
- Siegel disks and geometric function theory in the work of Yoccoz (D.H. Hamilton)
- Sufficient confidents for univalence and quasiconformal extendibility of analytic functions (L.A. Aksent'ev, P.L. Shabalin)
- Bounded univalent functions (D.V. Prokhorov)
- The *-function in complex analysis (A. Baernstein II)
- Logarithmic geometry, exponentiation, and coefficient bounds in the theory of univalent functions and nonoverlapping domains (A.Z. Grinshpan)
- Circle packing and discrete analytic function theory (K. Stephenson)
- Extreme points and support points (T.H. MacGregory, D.R. Wilken)
- The method of the extremal metric (J.A. Jenkins)
- Universal Teichm�uller space (F.P. Gardiner, W.J. Harvey)
- Application of conformal and quasiconformal mappings and their properties in approximation theory (V.V. Andrievskii)
- Author Index
- Subject Index.