Cargando…

Handbook of complex analysis : geometric function theory. Volume 1 /

Geometric Function Theory is a central part of Complex Analysis (one complex variable). The Handbook of Complex Analysis - Geometric Function Theory deals with this field and its many ramifications and relations to other areas of mathematics and physics. The theory of conformal and quasiconformal ma...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: K�uhnau, Reiner (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : North Holland/Elsevier, 2002.
Edición:1st ed.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162707777
003 OCoLC
005 20231117015039.0
006 m o d
007 cr cn|||||||||
008 070806s2002 ne a ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OPELS  |d OCLCQ  |d OPELS  |d OCLCQ  |d OCLCF  |d DEBBG  |d N$T  |d YDXCP  |d IDEBK  |d UKDOC  |d OCLCQ  |d DEBSZ  |d ESU  |d D6H  |d LEAUB  |d OL$  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d OCLCO 
019 |a 173807735  |a 175292203 
020 |a 9780444828453 
020 |a 0444828451 
020 |a 9780080532813 
020 |a 0080532810 
035 |a (OCoLC)162707777  |z (OCoLC)173807735  |z (OCoLC)175292203 
050 4 |a QA360  |b .H36 2002eb 
072 7 |a QA  |2 lcco 
072 7 |a MAT  |x 040000  |2 bisacsh 
082 0 4 |a 515/.9  |2 22 
245 0 0 |a Handbook of complex analysis :  |b geometric function theory.  |n Volume 1 /  |c edited by R. K�uhnau. 
246 3 0 |a Geometric function theory.  |n Volume 1 
250 |a 1st ed. 
260 |a Amsterdam ;  |a Boston :  |b North Holland/Elsevier,  |c 2002. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Geometric Function Theory is a central part of Complex Analysis (one complex variable). The Handbook of Complex Analysis - Geometric Function Theory deals with this field and its many ramifications and relations to other areas of mathematics and physics. The theory of conformal and quasiconformal mappings plays a central role in this Handbook, for example a priori-estimates for these mappings which arise from solving extremal problems, and constructive methods are considered. As a new field the theory of circle packings which goes back to P. Koebe is included. The Handbook should be useful for experts as well as for mathematicians working in other areas, as well as for physicists and engineers. A collection of independent survey articles in the field of GeometricFunction Theory Existence theorems and qualitative properties of conformal and quasiconformal mappings A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane). 
505 0 |a Preface -- List of Contributors -- Univalent and multivalent functions (W.K. Hayman) -- Conformal maps at the boundary (Ch. Pommerenke) -- Extremal quasiconformal mapings of the disk (E. Reich) -- Conformal welding (D.H. Hamilton) -- Siegel disks and geometric function theory in the work of Yoccoz (D.H. Hamilton) -- Sufficient confidents for univalence and quasiconformal extendibility of analytic functions (L.A. Aksent'ev, P.L. Shabalin) -- Bounded univalent functions (D.V. Prokhorov) -- The *-function in complex analysis (A. Baernstein II) -- Logarithmic geometry, exponentiation, and coefficient bounds in the theory of univalent functions and nonoverlapping domains (A.Z. Grinshpan) -- Circle packing and discrete analytic function theory (K. Stephenson) -- Extreme points and support points (T.H. MacGregory, D.R. Wilken) -- The method of the extremal metric (J.A. Jenkins) -- Universal Teichm�uller space (F.P. Gardiner, W.J. Harvey) -- Application of conformal and quasiconformal mappings and their properties in approximation theory (V.V. Andrievskii) -- Author Index -- Subject Index. 
504 |a Includes bibliographical references and indexes. 
588 0 |a Print version record. 
650 0 |a Geometric function theory. 
650 6 |a Th�eorie g�eom�etrique des fonctions.  |0 (CaQQLa)201-0013099 
650 7 |a MATHEMATICS  |x Complex Analysis.  |2 bisacsh 
650 7 |a Geometric function theory  |2 fast  |0 (OCoLC)fst00940832 
650 1 7 |a Functietheorie.  |2 gtt 
700 1 |a K�uhnau, Reiner.  |4 edt 
776 0 8 |i Print version:  |z 0444828451  |z 9780444828453  |w (DLC) 2003279721  |w (OCoLC)51321298 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444828453  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=18745709&volume=1  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/handbooks/18745709/1  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/handbooks/18745709  |z Texto completo