Cargando…

Geometric function theory. Vol. 2 /

Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings. Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: K�uhnau, Reiner
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier North Holland, 2004.
Colección:Handbook of complex analysis.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo
Texto completo
Tabla de Contenidos:
  • Preface (R. K�uhnau).
  • Quasiconformal mappings in euclidean space (F.W. Gehring).
  • Variational principles in the theory of quasiconformal maps (S.L. Krushkal).
  • The conformal module of quadrilaterals and of rings (R. K�uhnau).
  • Canonical conformal and quasiconformal mappings. Identities. Kernel functions (R. K�uhnau).
  • Univalent holomorphic functions with quasiconform extensions (variational approach) (S.L. Krushkal).
  • Transfinite diameter, Chebyshev constant and capacity (S. Kirsch).
  • Some special classes of conformal mappings (T.J. Suffridge).
  • Univalence and zeros of complex polynomials (G. Schmieder).
  • Methods for numerical conformal mapping (R. Wegmann).
  • Univalent harmonic mappings in the plane (D. Bshouty, W. Hengartner).
  • Quasiconformal extensions and reflections (S.L. Krushkal).
  • Beltrami equation (U. Srebro, E. Yakubov).
  • The applications of conformal maps in electrostatics (R. K�uhnau).
  • Special functions in Geometric Function Theory (S.-L. Qin, M. Vuorinen).
  • Extremal functions in Geometric Function Theory. Special functions. Inequalities (R. K�uhnau).
  • Eigenvalue problems and conformal mapping (B. Dittmar).
  • Foundations of quasiconformal mappings (C.A. Cazacu).
  • Quasiconformal mappings in value-distribution theory (D. Drasin. A.A. Goldberg, P. Poggi-Corradini).