Geometric function theory. Vol. 2 /
Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings. Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier North Holland,
2004.
|
Colección: | Handbook of complex analysis.
|
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo Texto completo |
Tabla de Contenidos:
- Preface (R. K�uhnau).
- Quasiconformal mappings in euclidean space (F.W. Gehring).
- Variational principles in the theory of quasiconformal maps (S.L. Krushkal).
- The conformal module of quadrilaterals and of rings (R. K�uhnau).
- Canonical conformal and quasiconformal mappings. Identities. Kernel functions (R. K�uhnau).
- Univalent holomorphic functions with quasiconform extensions (variational approach) (S.L. Krushkal).
- Transfinite diameter, Chebyshev constant and capacity (S. Kirsch).
- Some special classes of conformal mappings (T.J. Suffridge).
- Univalence and zeros of complex polynomials (G. Schmieder).
- Methods for numerical conformal mapping (R. Wegmann).
- Univalent harmonic mappings in the plane (D. Bshouty, W. Hengartner).
- Quasiconformal extensions and reflections (S.L. Krushkal).
- Beltrami equation (U. Srebro, E. Yakubov).
- The applications of conformal maps in electrostatics (R. K�uhnau).
- Special functions in Geometric Function Theory (S.-L. Qin, M. Vuorinen).
- Extremal functions in Geometric Function Theory. Special functions. Inequalities (R. K�uhnau).
- Eigenvalue problems and conformal mapping (B. Dittmar).
- Foundations of quasiconformal mappings (C.A. Cazacu).
- Quasiconformal mappings in value-distribution theory (D. Drasin. A.A. Goldberg, P. Poggi-Corradini).