Switchmode RF power amplifiers /
A majority of people now have a digital mobile device whether it be a cell phone, laptop, or blackberry. Now that we have the mobility we want it to be more versatile and dependable; RF power amplifiers accomplish just that. These amplifiers take a small input and make it stronger and larger creatin...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Boston :
Elsevier/Newnes,
�2007.
|
Colección: | Communications engineering series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Table of Contents
- About Andrei Grebennikov
- About Nathan O. Sokal
- Preface
- Acknowledgments
- Chapter 1: Power-Amplifier Design Principles
- 1.1 Spectral-Domain Analysis
- 1.2 Basic Classes of Operation: A, AB, B, and C
- 1.3 Active Device Models
- 1.4 High-Frequency Conduction Angle
- 1.5 Nonlinear Effect of Collector Capacitance
- 1.6 Push-Pull Power Amplifiers
- 1.7 Power Gain and Stability
- 1.8 Parametric Oscillations
- References
- Chapter 2: Class-D Power Amplifiers
- 2.1 Switched-Mode Power Amplifiers with Resistive Load
- 2.2 Complementary Voltage-Switching Configuration
- 2.3 Transformer-Coupled Voltage-Switching Configuration
- 2.4 Symmetrical Current-Switching Configuration
- 2.5 Transformer-Coupled Current-Switching Configuration
- 2.6 Voltage-Switching Configuration with Reactive Load
- 2.7 Drive and Transition Time
- 2.8 Practical Class-D Power Amplifier Implementation
- References
- Chapter 3: Class-F Power Amplifiers
- 3.1 Biharmonic Operation Mode
- 3.2 Idealized Class-F Mode
- 3.3 Class F with Maximally Flat Waveforms
- 3.4 Class F with Quarter-wave Transmission Line
- 3.5 Effect of Saturation Resistance and Shunt Capacitance
- 3.6 Load Networks with Lumped Elements
- 3.7 Load Networks with Transmission Lines
- 3.8 LDMOSFET Power-Amplifier Design Examples
- 3.9 Practical RF and Microwave Class-F Power Amplifiers
- References
- Chapter 4: Inverse Class F
- 4.1 Biharmonic Operation Mode
- 4.2 Idealized Inverse Class-F Mode
- 4.3 Inverse Class F with Quarter-wave Transmission Line
- 4.4 Load Networks with Lumped Elements
- 4.5 Load Networks with Transmission Lines
- 4.6 LDMOSFET Power-Amplifier Design Examples
- 4.7 Practical Implementation
- References
- Chapter 5: Class E with Shunt Capacitance
- 5.1 Effect of Detuned Resonant Circuit
- 5.2 Load Network with Shunt Capacitor and Series Filter
- 5.3 Matching with Standard Load
- 5.4 Effect of Saturation Resistance
- 5.5 Driving Signal and Finite Switching Time
- 5.6 Effect of Nonlinear Shunt Capacitance
- 5.7 Push-Pull Operation Mode
- 5.8 Load Network with Transmission Lines
- 5.9 Practical RF and Microwave Class-E Power Amplifiers and Applications
- References
- Chapter 6: Class E with Finite dc-Feed Inductance
- 6.1 Class E with One Capacitor and One Inductor
- 6.2 Generalized Class-E Load Network with Finite dc-Feed Inductance
- 6.3 Subharmonic Class E
- 6.4 Parallel-Circuit Class E
- 6.5 Even-Harmonic Class E
- 6.6 Effect of Bondwire Inductance
- 6.7 Load Network with Transmission Lines
- 6.8 Broadband Class E
- 6.9 Power Gain
- 6.10 CMOS Class-E Power Amplifiers
- References
- Chapter 7: Class E with Quarter-wave Transmission Line
- 7.1 Load Network with Parallel Quarter-wave Line
- 7.2 Optimum Load Network Parameters
- 7.3 Load Network with Zero Series Reactance
- 7.4 Matching Circuit with Lumped Elements
- 7.5 Matching Circui.