Cargando…

Numerical ecology /

The book describes and discusses the numerical methods which are successfully being used for analysing ecological data, using a clear and comprehensive approach. These methods are derived from the fields of mathematical physics, parametric and nonparametric statistics, information theory, numerical...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Legendre, Pierre, 1946-
Otros Autores: Legendre, Louis
Formato: Electrónico eBook
Idioma:Inglés
Francés
Publicado: Amsterdam ; New York : Elsevier, 1998.
Edición:2nd English ed.
Colección:Developments in environmental modelling ; 20.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo
Tabla de Contenidos:
  • Chapter headings and selected parts: Preface. Complex Ecological Data Sets. Numerical analysis of ecological data. Statistical testing by permutation. Ecological descriptors. Matrix Algebra: A Summary. The ecological data matrix. Vectors and scaling. Eigenvalues and eigenvectors. Dimensional Analysis in Ecology. Fundamental principles and the Pi theorem. Scale factors and models. Multidimensional Quantitative Data. Multidimensional variables and dispersion matrix. Multinormal distribution. Tests of normality and multinormality. Multidimensional Semiquantitative data. Nonparametric statistics. Quantitative, semiquantitative, and qualitative multivariates. Multidimensional Qualitative Data. Multiway contingency tables. Species diversity. Ecological Resemblance. The basis for clustering and ordination. Association coefficients. R mode: coefficients of dependence. Cluster Analysis. The basic model: single linkage clustering. Cophenetic matrix and ultrametric property. Hierarchical divisive clustering. Ordination in Reduced Space. Projecting data sets in a few dimensions. Principal component analysis (PCA). Nonmetric multidimensional scaling (MDS). Interpretation of Ecological Structures. Ecological structures. The mathematics of ecological interpretation. The 4th-corner problem. Canonical Analysis. Redundancy analysis (RDA). Canonical correspondence analysis (CCA). Canonical analysis of species data. Ecological Data Series. Characteristics of data series and research objectives. Trend extraction and numerical filters. Periodic variabilty: spectral analysis. Detection of discontinuities on multivariate series. Box-Jenkins models. Spatial Analysis. Unconstrained and constrained ordination maps. Causal modelling: partial canonical analysis. Causal modelling: partial Mantel analysis. Bibliography. Tables. Subject index.