Cargando…

Linear discrete parabolic problems /

This volume introduces a unified, self-contained study of linear discrete parabolic problems through reducing the starting discrete problem to the Cauchy problem for an evolution equation in discrete time. Accessible to beginning graduate students, the book contains a general stability theory of dis...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bakaev, Nikolai Yu
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier, 2006.
Edición:1st ed.
Colección:North-Holland mathematics studies ; 203.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162587214
003 OCoLC
005 20231117014958.0
006 m o d
007 cr cn|||||||||
008 070806s2006 ne ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OPELS  |d OCLCQ  |d N$T  |d YDXCP  |d MERUC  |d E7B  |d TULIB  |d OCLCO  |d OCLCQ  |d OPELS  |d OCLCF  |d DEBBG  |d OCLCQ  |d EBLCP  |d OCLCQ  |d COO  |d OCLCQ  |d DEBSZ  |d ESU  |d STF  |d D6H  |d OCLCQ  |d LEAUB  |d OL$  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 76863267  |a 647547573  |a 779919960 
020 |a 9780444521408 
020 |a 0444521402 
020 |a 0080462081  |q (electronic bk.) 
020 |a 9780080462080  |q (electronic bk.) 
035 |a (OCoLC)162587214  |z (OCoLC)76863267  |z (OCoLC)647547573  |z (OCoLC)779919960 
050 4 |a QA871  |b .B34 2006eb 
072 7 |a MAT  |x 007000  |2 bisacsh 
082 0 4 |a 515/.392  |2 22 
100 1 |a Bakaev, Nikolai Yu. 
245 1 0 |a Linear discrete parabolic problems /  |c Nikolai Yu. Bakaev. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a Boston :  |b Elsevier,  |c 2006. 
300 |a 1 online resource (xv, 286 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a North-Holland mathematics studies,  |x 0304-0208 ;  |v 203 
520 |a This volume introduces a unified, self-contained study of linear discrete parabolic problems through reducing the starting discrete problem to the Cauchy problem for an evolution equation in discrete time. Accessible to beginning graduate students, the book contains a general stability theory of discrete evolution equations in Banach space and gives applications of this theory to the analysis of various classes of modern discretization methods, among others, Runge-Kutta and linear multistep methods as well as operator splitting methods. Key features: * Presents a unified approach to examining discretization methods for parabolic equations. * Highlights a stability theory of discrete evolution equations (discrete semigroups) in Banach space. * Deals with both autonomous and non-autonomous equations as well as with equations with memory. * Offers a series of numerous well-posedness and convergence results for various discretization methods as applied to abstract parabolic equations; among others, Runge-Kutta and linear multistep methods as well as certain operator splitting methods. * Provides comments of results and historical remarks after each chapter. Presents a unified approach to examining discretization methods for parabolic equations. Highlights a stability theory of discrete evolution equations (discrete semigroups) in Banach space. Deals with both autonomous and non-autonomous equations as well as with equations with memory. Offers a series of numerous well-posedness and convergence results for various discretization methods as applied to abstract parabolic equations; among others, Runge-Kutta and linear multistep methods as well as certain operator splitting methods as well as certain operator splitting methods are studied in detail. Provides comments of results and historical remarks after each chapter. 
505 0 |a Preface. -- Part I. EVOLUTION EQUATIONS IN DISCRETE TIME. -- Preliminaries. -- Main Results on Stability. -- Operator Splitting Problems. -- Equations with Memory. -- Part II. RUNGE-KUTTA METHODS. -- Discretization by Runge-Kutta methods. -- Analysis of Stability. -- Convergence Estimates. -- Variable Stepsize Approximations. -- Part III. OTHER DISCRETIZATION METHODS. -- The/theta-method. -- Methods with Splitting Operator. -- Linear Multistep Methods. -- Part IV. INTEGRO-DIFFERENTIAL EQUATIONS UNDER DISCRETIZATION. -- Integro-Differential Equations. -- APPENDIX. -- A Functions of Linear Operators. -- B Cauchy Problems in Banach Space. 
504 |a Includes bibliographical references (pages 269-283) and index. 
588 0 |a Print version record. 
650 0 |a Stability. 
650 0 |a Runge-Kutta formulas. 
650 0 |a Differential equations. 
650 0 |a Computer science  |x Mathematics. 
650 6 |a Stabilit�e.  |0 (CaQQLa)201-0038294 
650 6 |a M�ethode de Runge-Kutta.  |0 (CaQQLa)201-0150232 
650 6 |a �Equations diff�erentielles.  |0 (CaQQLa)201-0003667 
650 6 |a Informatique  |x Math�ematiques.  |0 (CaQQLa)201-0123277 
650 7 |a stability.  |2 aat  |0 (CStmoGRI)aat300191653 
650 7 |a MATHEMATICS  |x Differential Equations  |x General.  |2 bisacsh 
650 7 |a Computer science  |x Mathematics  |2 fast  |0 (OCoLC)fst00872460 
650 7 |a Differential equations  |2 fast  |0 (OCoLC)fst00893446 
650 7 |a Runge-Kutta formulas  |2 fast  |0 (OCoLC)fst01101336 
650 7 |a Stability  |2 fast  |0 (OCoLC)fst01131203 
776 0 8 |i Print version:  |a Bakaev, Nikolai Yu.  |t Linear discrete parabolic problems.  |b 1st ed.  |d Amsterdam ; Boston : Elsevier, 2006  |z 0444521402  |z 9780444521408  |w (DLC) 2005055340  |w (OCoLC)62408816 
830 0 |a North-Holland mathematics studies ;  |v 203.  |x 0304-0208 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444521408  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=03040208&volume=203  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/03040208  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/03040208/203  |z Texto completo