Cargando…

Perturbation theory for matrix equations /

The book is devoted to the perturbation analysis of matrix equations. The importance of perturbation analysis is that it gives a way to estimate the influence of measurement and/or parametric errors in mathematical models together with the rounding errors done in the computational process. The pertu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Konstantinov, M. M. (Mihail M.), 1948-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier, 2003.
Edición:1st ed.
Colección:Studies in computational mathematics ; 9.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162579626
003 OCoLC
005 20231117014954.0
006 m o d
007 cr cn|||||||||
008 070806s2003 ne a ob 001 0 eng d
010 |z  2003053106 
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OCLCG  |d OPELS  |d OCLCQ  |d MERUC  |d N$T  |d YDXCP  |d IDEBK  |d E7B  |d TULIB  |d OCLCO  |d OCLCQ  |d OPELS  |d OCLCF  |d DEBBG  |d OCLCQ  |d COO  |d OCLCQ  |d DEBSZ  |d FEM  |d OCLCQ  |d STF  |d D6H  |d OCLCQ  |d LEAUB  |d OL$  |d BWN  |d VLY  |d OCLCQ  |d OCLCO  |d COM  |d OCLCO  |d OCLCQ  |d QGK  |d OCLCO 
019 |a 179845418  |a 441802329  |a 647696142  |a 779920238  |a 969015369  |a 989414430  |a 1035659660  |a 1110258076  |a 1162203071  |a 1241848218  |a 1259172051 
020 |a 9780444513151 
020 |a 0444513159 
020 |a 0080538673  |q (electronic bk.) 
020 |a 9780080538679  |q (electronic bk.) 
020 |a 1281048720 
020 |a 9781281048721 
020 |a 9786611048723 
020 |a 6611048723 
035 |a (OCoLC)162579626  |z (OCoLC)179845418  |z (OCoLC)441802329  |z (OCoLC)647696142  |z (OCoLC)779920238  |z (OCoLC)969015369  |z (OCoLC)989414430  |z (OCoLC)1035659660  |z (OCoLC)1110258076  |z (OCoLC)1162203071  |z (OCoLC)1241848218  |z (OCoLC)1259172051 
050 4 |a QA871  |b .P43 2003eb 
072 7 |a MAT  |x 007000  |2 bisacsh 
082 0 4 |a 515/.35  |2 22 
245 0 0 |a Perturbation theory for matrix equations /  |c Mihail Konstantinov [and others]. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a Boston :  |b Elsevier,  |c 2003. 
300 |a 1 online resource (xii, 429 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Studies in computational mathematics,  |x 1570-579X ;  |v 9 
520 |a The book is devoted to the perturbation analysis of matrix equations. The importance of perturbation analysis is that it gives a way to estimate the influence of measurement and/or parametric errors in mathematical models together with the rounding errors done in the computational process. The perturbation bounds may further be incorporated in accuracy estimates for the solution computed in finite arithmetic. This is necessary for the development of reliable computational methods, algorithms and software from the viewpoint of modern numerical analysis. In this book a general perturbation theory for matrix algebraic equations is presented. Local and non-local perturbation bounds are derived for general types of matrix equations as well as for the most important equations arising in linear algebra and control theory. A large number of examples, tables and figures is included in order to illustrate the perturbation techniques and bounds. 
504 |a Includes bibliographical references and index. 
505 0 |a Introduction -- Perturbation problems -- Problems with explicit solutions -- Problems with implicit solutions -- Lyapunov majorants -- Singular problems -- Perturbation bounds -- General Sylvester equations -- Specific Sylvester equations -- General Lyapunov equations -- Lyapunov equations in control theory -- General quadratic equations -- Continuous-time Riccati equations -- Coupled Riccati equations -- General fractional-affine equations -- Symmetric fractional-affine equations -- Appendix A: Elements of algebra and analysis -- Appendix B: Unitary and orthogonal decompositions -- Appendix C: Kronecker product of metrices -- Appendix D: Fixed point principles -- Appendix E: Sylvester operators -- Appendix F: Lyapunov operators -- Appendix G: Lyapunov-like operators -- Appendix H: Notation. 
588 0 |a Print version record. 
546 |a English. 
650 0 |a Perturbation (Mathematics) 
650 0 |a Matrices. 
650 6 |a Perturbation (Math�ematiques)  |0 (CaQQLa)201-0027406 
650 6 |a Matrices.  |0 (CaQQLa)201-0024157 
650 7 |a MATHEMATICS  |x Differential Equations  |x General.  |2 bisacsh 
650 7 |a Matrices  |2 fast  |0 (OCoLC)fst01012399 
650 7 |a Perturbation (Mathematics)  |2 fast  |0 (OCoLC)fst01058905 
650 7 |a Matrizes (�algebra)  |2 larpcal 
650 7 |a Equa�c�oes n�ao lineares.  |2 larpcal 
700 1 |a Konstantinov, M. M.  |q (Mihail M.),  |d 1948- 
776 0 8 |i Print version:  |t Perturbation theory for matrix equations.  |b 1st ed.  |d Amsterdam ; Boston : Elsevier, 2003  |z 0444513159  |z 9780444513151  |w (DLC) 2003053106  |w (OCoLC)52258082 
830 0 |a Studies in computational mathematics ;  |v 9.  |x 1570-579X 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444513151  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=1570579X&volume=9  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/1570579X/9  |z Texto completo