C₀-semigroups and applications /
The book contains a unitary and systematic presentation of both classical and very recent parts of a fundamental branch of functional analysis: linear semigroup theory with main emphasis on examples and applications. There are several specialized, but quite interesting, topics which didn't find...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés Romanian |
Publicado: |
Amsterdam ; Boston :
Elsevier Science,
2003.
|
Edición: | 1st edition |
Colección: | North-Holland mathematics studies ;
191. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
Tabla de Contenidos:
- Cover
- Contents
- Preface
- Chapter 1. Preliminaries
- 1.1. Vector-Valued Measurable Functions
- 1.2. The Bochner Integral
- 1.3. Basic Function Spaces
- 1.4. Functions of Bounded Variation
- 1.5. Sobolev Spaces
- 1.6. Unbounded Linear Operators
- 1.7. Elements of Spectral Analysis
- 1.8. Functional Calculus for Bounded Operators
- 1.9. Functional Calculus for Unbounded Operators
- Problems
- Notes
- Chapter 2. Semigroups of Linear Operators
- 2.1. Uniformly Continuous Semigroups
- 2.2. Generators of Uniformly Continuous Semigroups
- 2.3. C0-Semigroups. General Properties
- 2.4. The Infinitesimal Generator
- Problems
- Notes
- Chapter 3. Generation Theorems
- 3.1. The Hille-Yosida Theorem. Necessity
- 3.2. The Hille-Yosida Theorem. Sufficiency
- 3.3. The Feller-Miyadera-Phillips Theorem
- 3.4. The Lumer-Phillips Theorem
- 3.5. Some Consequences
- 3.6. Examples
- 3.7. The Dual of a C0-Semigroup
- 3.8. The Sun Dual of a C0-Semigroup
- 3.9. Stone Theorem
- Problems
- Notes
- Chapter 4. Differential Operators Generating C0- Semigroups
- 4.1. The Laplace Operator with Dirichlet Boundary Condition
- 4.2. The Laplace Operator with Neumann Boundary Condition
- 4.3. The Maxwell Operator
- 4.4. The Directional Derivative
- 4.5. The Schr�odinger Operator
- 4.6. The Wave Operator
- 4.7. The Airy Operator
- 4.8. The Equations of Linear Thermoelasticity
- 4.9. The Equations of Linear Viscoelasticity
- Problems
- Notes
- Chapter 5. Approximation Problems and Applications
- 5.1. The Continuity of A?etA
- 5.2. The Chernoff and Lie-Trotter Formulae
- 5.3. A Perturbation Result
- 5.4. The Central Limit Theorem
- 5.5. Feynman Formula
- 5.6. The Mean Ergodic Theorem
- Problems
- Notes
- Chapter 6. Some Special Classes of C0-Semigroups
- 6.1. Equicontinuous Semigroups
- 6.2. Compact Semigroups
- 6.3. Differentiable Semigroups
- 6.4. Semigroups with Symmetric Generators
- 6.5. The Linear Delay Equation
- Problems
- Notes
- Chapter 7. Analytic Semigroups
- 7.1. Definition and Characterizations
- 7.2. The Heat Equation
- 7.3. The Stokes Equation
- 7.4. A Parabolic Problem with Dynamic Boundary Conditions
- 7.5. An Elliptic Problem with Dynamic Boundary Conditions
- 7.6. Fractional Powers of Closed Operators
- 7.7. Further Investigations in the Analytic Case
- Problems
- Notes
- Chapter 8. The Nonhomogeneous Cauchy Problem
- 8.1. The Cauchy Problem u' = Au + f, u(a) =?
- 8.2. Smoothing Effect. The Hilbert Space Case
- 8.3. An Approximation Result
- 8.4. Compactness of the Solution Operator from LP(a, b ; X
- 8.5. The Case when (?I
- A) -1 is Compact
- 8.6. Compactness of the Sol.