Cargando…

Numerical analysis of wavelet methods /

Since their introduction in the 1980's, wavelets have become a powerful tool in mathematical analysis, with applications such as image compression, statistical estimation and numerical simulation of partial differential equations. One of their main attractive features is the ability to accurate...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cohen, Albert, 1965-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier, 2003.
Edición:1st ed.
Colección:Studies in mathematics and its applications ; v. 32.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162579284
003 OCoLC
005 20231117014953.0
006 m o d
007 cr cn|||||||||
008 070806s2003 ne a ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OKU  |d OPELS  |d OCLCQ  |d N$T  |d IDEBK  |d MERUC  |d E7B  |d TULIB  |d OCLCO  |d OCLCQ  |d OPELS  |d OCLCF  |d DEBBG  |d YDXCP  |d OCLCQ  |d COO  |d OCLCQ  |d DEBSZ  |d FEM  |d STF  |d D6H  |d OCLCQ  |d LEAUB  |d OL$  |d BWN  |d VLY  |d OCLCQ  |d OCLCO  |d COM  |d OCLCO  |d OCLCQ 
019 |a 232352434  |a 646740885  |a 779920208  |a 969000719  |a 989299718  |a 1035652975  |a 1102529069  |a 1110267123  |a 1162579372  |a 1241752443 
020 |a 9780444511249 
020 |a 0444511245 
020 |a 9780080537856  |q (electronic bk.) 
020 |a 0080537855  |q (electronic bk.) 
020 |a 1281279579 
020 |a 9781281279576 
020 |a 9786611279578 
020 |a 6611279571 
035 |a (OCoLC)162579284  |z (OCoLC)232352434  |z (OCoLC)646740885  |z (OCoLC)779920208  |z (OCoLC)969000719  |z (OCoLC)989299718  |z (OCoLC)1035652975  |z (OCoLC)1102529069  |z (OCoLC)1110267123  |z (OCoLC)1162579372  |z (OCoLC)1241752443 
050 4 |a QA403.3  |b .C64 2003eb 
072 7 |a QA  |2 lcco 
072 7 |a MAT  |x 016000  |2 bisacsh 
082 0 4 |a 515/.2433  |2 22 
100 1 |a Cohen, Albert,  |d 1965- 
245 1 0 |a Numerical analysis of wavelet methods /  |c Albert Cohen. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a Boston :  |b Elsevier,  |c 2003. 
300 |a 1 online resource (xviii, 336 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Studies in mathematics and its applications,  |x 0168-2024 ;  |v v. 32 
504 |a Includes bibliographical references (pages 321-333) and index. 
505 0 |a Basic examples -- Multiresolution approximation -- Approximation and smoothness -- Adaptivity. 
520 |a Since their introduction in the 1980's, wavelets have become a powerful tool in mathematical analysis, with applications such as image compression, statistical estimation and numerical simulation of partial differential equations. One of their main attractive features is the ability to accurately represent fairly general functions with a small number of adaptively chosen wavelet coefficients, as well as to characterize the smoothness of such functions from the numerical behaviour of these coefficients. The theoretical pillar that underlies such properties involves approximation theory and function spaces, and plays a pivotal role in the analysis of wavelet-based numerical methods. This book offers a self-contained treatment of wavelets, which includes this theoretical pillar and it applications to the numerical treatment of partial differential equations. Its key features are: 1. Self-contained introduction to wavelet bases and related numerical algorithms, from the simplest examples to the most numerically useful general constructions. 2. Full treatment of the theoretical foundations that are crucial for the analysis of wavelets and other related multiscale methods : function spaces, linear and nonlinear approximation, interpolation theory. 3. Applications of these concepts to the numerical treatment of partial differential equations : multilevel preconditioning, sparse approximations of differential and integral operators, adaptive discretization strategies. 
588 0 |a Print version record. 
546 |a English. 
650 0 |a Wavelets (Mathematics) 
650 0 |a Numerical analysis. 
650 6 |a Ondelettes.  |0 (CaQQLa)201-0078352 
650 6 |a Analyse num�erique.  |0 (CaQQLa)201-0021900 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 7 |a Numerical analysis.  |2 fast  |0 (OCoLC)fst01041273 
650 7 |a Wavelets (Mathematics)  |2 fast  |0 (OCoLC)fst01172896 
776 0 8 |i Print version:  |a Cohen, Albert, 1965-  |t Numerical analysis of wavelet methods.  |b 1st ed.  |d Amsterdam ; Boston : Elsevier, 2003  |z 0444511245  |z 9780444511249  |w (DLC) 2003050131  |w (OCoLC)51984805 
830 0 |a Studies in mathematics and its applications ;  |v v. 32.  |x 0168-2024 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444511249  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=01682024&volume=32  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/01682024/32  |z Texto completo