Conceptual foundations of materials : a standard model for ground- and excited-state properties /
The goal of this Volume "Conceptual Foundations of Materials: A standard model for ground- and excited-state properties" is to present the fundamentals of electronic structure theory that are central to the understanding and prediction of materials phenomena and properties. The emphasis is...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Boston :
Elsevier,
2006.
|
Edición: | 1st ed. |
Colección: | Contemporary concepts of condensed matter science.
|
Temas: | |
Acceso en línea: | Texto completo Texto completo |
Tabla de Contenidos:
- 1. Overview
- A Standard Model of Solids
- 1.1 Background
- 1.2 The Hamiltonian
- 1.3 Emperical models
- 1.4 Ab initio calculations
- 1.5 Other sections
- 2. Predicting Materials and Properties
- Theory of the Ground and Excited States
- 2.1 Introduction
- 2.2 The ground state and density functional formulism
- 2.3 Ab initio pseudopotentials
- 2.4 Electronic, structural, vibrational and other ground-state properties
- 2.5 Electron-phonon interaction and superconductivity
- 2.6 Excited states, spectroscopic properties, and Green's functions
- 2.7 Single-particle Green's function and electron self energy
- 2.8 The GW approximation
- 2.9 Quasiparticle excitations in materials
- 2.10 Electron-hole excitations and the Bethe-Salpeter equation
- 2.11 Optical properties of solids, surfaces, and nanostructures
- 2.12 Spectroscopic properties of nanotubes
- a novel 1D system
- 2.13 Summary and perspectives
- 3. Ab Initio Molecular Dynamics
- Dynamics and Thermodynamic Properties
- 3.1 Molecular Dynamics
- 3.2 Potential energy surface and electronic structure
- 3.3 Ab-initio Molecular Dynamics: the Car-Parrinello approach
- 3.4 Numerical implementation
- 3.5 An illustrative application: liquid water
- 3.6 Phase diagrams from first-principles
- 3.7 Rare events
- 3.8 Omissions, perspectives and open issues
- 4. Structure and Electronic Properties of Complex Materials: Clusters, Liquids and Nanocrystals
- 4.1 Introduction
- 4.2 The electronic structure problem
- 4.3 Solving the Kohn-Sham problem
- 4.4 Simulating liquid silicon
- 4.5 Properties of confined systems: clusters
- 4.6 Quantum confinement in nanocrystals and dots
- 5. Quantum Electrostatics of Insulators
- Polarization, Wannier Functions, and Electric Fields
- 5.1 Introduction
- 5.2 The polarization
- 5.3 Outline of density-functional perturbation theory
- 5.4 The Berry-phase theory of polarization
- 5.5 Reformulation in terms of Wannier functions
- 5.6 The quantum of polarization and the surface charge theorem
- 5.7 Treatment of finite electric fields
- 5.8 Conclusions
- 6. Electron Transport
- 6.1 Introduction
- 6.2 Conductivity
- 6.3 Conductance versus conductivity ; the point contact
- 6.4 Kubo and other formulas
- 6.5 Supercurrent and Andreev reflection
- 6.6 Bloch-Boltzmann theory
- 6.7 Kondo effect and resistivity minimum in metals
- 6.8 Dirty Fermi liquids and intrinsically diffusive states
- 6.9 Weak localization and quantum corrections
- 6.10 Neutron, photoemission, and infrared spectroscopies
- 6.11 Semiconductors and the metal/insulator transition
- 6.12 Coulomb blockade
- 6.13 Coulomb gap.