Cargando…

Conceptual foundations of materials : a standard model for ground- and excited-state properties /

The goal of this Volume "Conceptual Foundations of Materials: A standard model for ground- and excited-state properties" is to present the fundamentals of electronic structure theory that are central to the understanding and prediction of materials phenomena and properties. The emphasis is...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Louie, Steven G., 1949-, Cohen, Marvin L.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier, 2006.
Edición:1st ed.
Colección:Contemporary concepts of condensed matter science.
Temas:
Acceso en línea:Texto completo
Texto completo
Tabla de Contenidos:
  • 1. Overview
  • A Standard Model of Solids
  • 1.1 Background
  • 1.2 The Hamiltonian
  • 1.3 Emperical models
  • 1.4 Ab initio calculations
  • 1.5 Other sections
  • 2. Predicting Materials and Properties
  • Theory of the Ground and Excited States
  • 2.1 Introduction
  • 2.2 The ground state and density functional formulism
  • 2.3 Ab initio pseudopotentials
  • 2.4 Electronic, structural, vibrational and other ground-state properties
  • 2.5 Electron-phonon interaction and superconductivity
  • 2.6 Excited states, spectroscopic properties, and Green's functions
  • 2.7 Single-particle Green's function and electron self energy
  • 2.8 The GW approximation
  • 2.9 Quasiparticle excitations in materials
  • 2.10 Electron-hole excitations and the Bethe-Salpeter equation
  • 2.11 Optical properties of solids, surfaces, and nanostructures
  • 2.12 Spectroscopic properties of nanotubes
  • a novel 1D system
  • 2.13 Summary and perspectives
  • 3. Ab Initio Molecular Dynamics
  • Dynamics and Thermodynamic Properties
  • 3.1 Molecular Dynamics
  • 3.2 Potential energy surface and electronic structure
  • 3.3 Ab-initio Molecular Dynamics: the Car-Parrinello approach
  • 3.4 Numerical implementation
  • 3.5 An illustrative application: liquid water
  • 3.6 Phase diagrams from first-principles
  • 3.7 Rare events
  • 3.8 Omissions, perspectives and open issues
  • 4. Structure and Electronic Properties of Complex Materials: Clusters, Liquids and Nanocrystals
  • 4.1 Introduction
  • 4.2 The electronic structure problem
  • 4.3 Solving the Kohn-Sham problem
  • 4.4 Simulating liquid silicon
  • 4.5 Properties of confined systems: clusters
  • 4.6 Quantum confinement in nanocrystals and dots
  • 5. Quantum Electrostatics of Insulators
  • Polarization, Wannier Functions, and Electric Fields
  • 5.1 Introduction
  • 5.2 The polarization
  • 5.3 Outline of density-functional perturbation theory
  • 5.4 The Berry-phase theory of polarization
  • 5.5 Reformulation in terms of Wannier functions
  • 5.6 The quantum of polarization and the surface charge theorem
  • 5.7 Treatment of finite electric fields
  • 5.8 Conclusions
  • 6. Electron Transport
  • 6.1 Introduction
  • 6.2 Conductivity
  • 6.3 Conductance versus conductivity ; the point contact
  • 6.4 Kubo and other formulas
  • 6.5 Supercurrent and Andreev reflection
  • 6.6 Bloch-Boltzmann theory
  • 6.7 Kondo effect and resistivity minimum in metals
  • 6.8 Dirty Fermi liquids and intrinsically diffusive states
  • 6.9 Weak localization and quantum corrections
  • 6.10 Neutron, photoemission, and infrared spectroscopies
  • 6.11 Semiconductors and the metal/insulator transition
  • 6.12 Coulomb blockade
  • 6.13 Coulomb gap.