Cargando…

Quantum theory, deformation, and integrability /

About four years ago a prominent string theorist was quoted as saying that it might be possible to understand quantum mechanics by the year 2000. Sometimes new mathematical developments make such understanding appear possible and even close, but on the other hand, increasing lack of experimental ver...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Carroll, Robert W., 1930-2012
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Elsevier Science B.V., 2000.
Edición:1st ed.
Colección:North-Holland mathematics studies ; 186.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162578484
003 OCoLC
005 20231117014950.0
006 m o d
007 cr cn|||||||||
008 070806s2000 nyu ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OCLCG  |d OPELS  |d OCLCQ  |d N$T  |d YDXCP  |d BTCTA  |d IDEBK  |d TULIB  |d OCLCO  |d OCLCQ  |d OPELS  |d OCLCF  |d DEBBG  |d EBLCP  |d NRU  |d UKDOC  |d OCLCQ  |d OCLCA  |d DEBSZ  |d ESU  |d OCLCQ  |d D6H  |d LEAUB  |d OL$  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ 
019 |a 173240342  |a 173509145  |a 176966818  |a 476099038  |a 779920302 
020 |a 9780444506214 
020 |a 0444506217 
020 |a 9780080540085  |q (electronic bk.) 
020 |a 0080540082  |q (electronic bk.) 
035 |a (OCoLC)162578484  |z (OCoLC)173240342  |z (OCoLC)173509145  |z (OCoLC)176966818  |z (OCoLC)476099038  |z (OCoLC)779920302 
050 4 |a QC174.17.G46  |b C37 2000eb 
072 7 |a QA  |2 lcco 
072 7 |a SCI  |x 057000  |2 bisacsh 
082 0 4 |a 530.12/01/516  |2 22 
100 1 |a Carroll, Robert W.,  |d 1930-2012. 
245 1 0 |a Quantum theory, deformation, and integrability /  |c Robert Carroll. 
250 |a 1st ed. 
260 |a New York :  |b Elsevier Science B.V.,  |c 2000. 
300 |a 1 online resource (xi, 407 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a North-Holland mathematics studies ;  |v 186 
520 |a About four years ago a prominent string theorist was quoted as saying that it might be possible to understand quantum mechanics by the year 2000. Sometimes new mathematical developments make such understanding appear possible and even close, but on the other hand, increasing lack of experimental verification make it seem to be further distant. In any event one seems to arrive at new revolutions in physics and mathematics every year. This book hopes to convey some of the excitment of this period, but will adopt a relatively pedestrian approach designed to illuminate the relations between quantum and classical. There will be some discussion of philosophical matters such as measurement, uncertainty, decoherence, etc. but philosophy will not be emphasized; generally we want to enjoy the fruits of computation based on the operator formulation of QM and quantum field theory. In Chapter 1 connections of QM to deterministic behavior are exhibited in the trajectory representations of Faraggi-Matone. Chapter 1 also includes a review of KP theory and some preliminary remarks on coherent states, density matrices, etc. and more on deterministic theory. We develop in Chapter 4 relations between quantization and integrability based on Moyal brackets, discretizations, KP, strings and Hirota formulas, and in Chapter 2 we study the QM of embedded curves and surfaces illustrating some QM effects of geometry. Chapter 3 is on quantum integrable systems, quantum groups, and modern deformation quantization. Chapter 5 involves the Whitham equations in various roles mediating between QM and classical behavior. In particular, connections to Seiberg-Witten theory (arising in <IT>N</IT> = 2 supersymmetric (susy) Yang-Mills (YM) theory) are discussed and we would still like to understand more deeply what is going on. Thus in Chapter 5 we will try to give some conceptual background for susy, gauge theories, renormalization, etc. from both a physical and mathematical point of view. In Chapter 6 we continue the deformation quantization then by exhibiting material based on and related to noncommutative geometry and gauge theory. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; Quantum Theory, Deformation and Integrability; Copyright Page; Contents; Preface; CHAPTER 1. QUANTIZATION AND INTEGRABILITY; CHAPTER 2. GEOMETRY AND EMBEDDING; CHAPTER 3. CLASSICAL AND QUANTUM INTEGRABILITY; CHAPTER 4. DISCRETE GEOMETRY AND MOYAL; CHAPTER 5. WHITHAM THEORY; CHAPTER 6. GEOMETRY AND DEFORMATION QUANTIZATION; Bibliography; Index. 
650 0 |a Geometric quantization. 
650 0 |a Operator algebras. 
650 0 |a Mathematical physics. 
650 6 |a Quantification g&#xFFFD;eom&#xFFFD;etrique.  |0 (CaQQLa)201-0269646 
650 6 |a Alg&#xFFFD;ebres d'op&#xFFFD;erateurs.  |0 (CaQQLa)201-0081805 
650 6 |a Physique math&#xFFFD;ematique.  |0 (CaQQLa)201-0008394 
650 7 |a SCIENCE  |x Physics  |x Quantum Theory.  |2 bisacsh 
650 7 |a Geometric quantization.  |2 fast  |0 (OCoLC)fst00940837 
650 7 |a Mathematical physics.  |2 fast  |0 (OCoLC)fst01012104 
650 7 |a Operator algebras.  |2 fast  |0 (OCoLC)fst01046408 
776 0 8 |i Print version:  |a Carroll, Robert Wayne, 1930-  |t Quantum theory, deformation, and integrability.  |b 1st ed.  |d New York : Elsevier Science B.V., 2000  |z 0444506217  |z 9780444506214  |w (DLC) 00047685  |w (OCoLC)45024489 
830 0 |a North-Holland mathematics studies ;  |v 186. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444506214  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=03040208&volume=186  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/03040208/186  |z Texto completo 
856 4 1 |u https://sciencedirect.uam.elogim.com/science/bookseries/03040208  |z Texto completo