Multivariate polysplines : applications to numerical and wavelet analysis /
Multivariate polysplines are a new mathematical technique that has arisen from a synthesis of approximation theory and the theory of partial differential equations. It is an invaluable means to interpolate practical data with smooth functions. Multivariate polysplines have applications in the design...
| Clasificación: | Libro Electrónico |
|---|---|
| Autor principal: | |
| Formato: | Electrónico eBook |
| Idioma: | Inglés |
| Publicado: |
San Diego, Calif. :
Academic Press,
�2001.
|
| Temas: | |
| Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Introduction
- Part I: Introduction to polysplines
- One-dimensional linear and cubic splines
- The two-dimensional case: data and smoothness concepts
- The objects concept: harmonic and polyharmonic functions in rectangular domains in R2
- Polysplines on strips in R2
- Application of polysplines to magnetism and CAGD
- The objects concept: Harmonic and polyharmonic functions in annuli in R2
- Polysplines on annuli in R2
- Polysplines on strips and annuli in Rn
- Compendium on spherical harmonics and polyharmonics functions
- Appendix on Chebyshev splines
- Appendix on Fourier series and Fourier transform
- Part II: Cardinal polysplines in Rn
- Cardinal L-splines according to Micchelli
- Riesz bounds for the cardinal L-splines QZ+1
- Cardinal interpolation polysplines on annuli
- Part III: Wavelet analysis
- Chui's cardinal spline wavelet analysis
- Polyharmonic wavelet analysis: Scaling and rationally invariant spaces
- Part IV: Polysplines for general interfaces
- Heuristic arguments
- Definition of polysplines and uniqueness for general interfaces
- A priori estimates and Fredholm operators
- Existence and convergence of polysplines
- Appendix on elliptic boundary value problems in Sobolev and H�older spaces
- Afterword.


