Cargando…

The effective crystal field potential /

As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mulak, J.
Otros Autores: Gajek, Zbigniew
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford [England] ; New York : Elsevier, 2000.
Edición:1st ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162566194
003 OCoLC
005 20231117014912.0
006 m o d
007 cr cn|||||||||
008 070806s2000 enka ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OCLCQ  |d IDEBK  |d OCLCQ  |d OCLCF  |d OCLCO  |d OCLCQ  |d AGLDB  |d OCLCQ  |d D6H  |d OCLCQ  |d LEAUB  |d OL$  |d OCLCQ  |d OCLCO  |d COM  |d OCLCO  |d OCLCQ 
019 |a 815550231  |a 823112423  |a 823832197  |a 823901278  |a 824092598  |a 824143234 
020 |a 9780080436081 
020 |a 0080436080 
020 |a 1281186406 
020 |a 9781281186409 
035 |a (OCoLC)162566194  |z (OCoLC)815550231  |z (OCoLC)823112423  |z (OCoLC)823832197  |z (OCoLC)823901278  |z (OCoLC)824092598  |z (OCoLC)824143234 
050 4 |a QD475  |b .M765 2000eb 
072 7 |a TGM  |2 bicssc 
082 0 4 |a 538/.43  |2 22 
100 1 |a Mulak, J. 
245 1 4 |a The effective crystal field potential /  |c Jacek Mulak and Zbigniew Gajek. 
250 |a 1st ed. 
260 |a Oxford [England] ;  |a New York :  |b Elsevier,  |c 2000. 
300 |a 1 online resource (xiii, 303 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, are only examples of a much wider class of experimental results dependent on it. The influence is discerned in all kinds of materials containing unpaired localized electrons: ionic crystals, semiconductors and metallic compounds including materials as intriguing as high-<IT>T<INF>c</INF></IT> superconductors, or heavy fermion systems. It is evident from the above that we deal with a widespread effect relative to all free ion terms except those which can stand the lowered symmetry, e.g. <IT>S</IT>-terms. Despite the universality of the phenomenon, the available handbooks on solid state physics pay only marginal attention to it, merely making mention of its occurrence. Present understanding of the origins of the crystal field potential differs essentially from the pioneering electrostatic picture postulated in the twenties. The considerable development of the theory that has been put forward since then can be traced in many regular articles scattered throughout the literature. The last two decades have left their impression as well but, to the authors' best knowledge, this period has not been closed with a more extended review. This has also motivated us to compile the main achievements in the field in the form of a book 
505 0 |a Chapter headings: Introduction. Parameterization of Crystal Field Hamiltonian. The Effective Crystal Field Potential. Chronological Development of Crystal Field Models. Ionic Complex or Quasi-Molecular Cluster. Generalized Product Function. Point Charge Model (PCM). One-Configurational Model with Neglecting the Non-Orthogonality. The Charge Penetration and Exchange Effects. The Exclusion Model. One-configurational Approach with Regards to Non-Orthogonality of the Wave Functions. Covalency Contribution, i.e. The Charge Transfer Effect. Shielding and Antishielding Effect: Contributions from Closed Electron Shells. Electrostatic Crystal Field Contributions with Consistent Multipolar Effects. Polarization. Crystal Field effect in the Stevens Perturbation Approach. Specific Mechanisms of Metallic States Contributing to the Crystal Field Potential. Virtual Bound State Contribution to the Crystal Field Potential. Hybridization or Covalent Mixing Between Localized States and Conduction Band States in Metallic Crystals. Density Functional Theory Approach. Analysis of the Experimental Data. Interpretation of Crystal Field Parameters with Additive Models. Lattice Dynamics Contribution. Extension of the Crystal Field Potential Beyond the One-Electron Model. Appendices. Author index. Keyword index. 
504 |a Includes bibliographical references (pages 263-286) and indexes. 
588 0 |a Print version record. 
650 0 |a Crystal field theory. 
650 6 |a Th&#xFFFD;eorie du champ cristallin.  |0 (CaQQLa)201-0011367 
650 7 |a Crystal field theory.  |2 fast  |0 (OCoLC)fst00884613 
650 7 |a F&#xFFFD;isica do estado s&#xFFFD;olido.  |2 larpcal 
700 1 |a Gajek, Zbigniew. 
776 0 8 |i Print version:  |a Mulak, J.  |t Effective crystal field potential.  |b 1st ed.  |d Oxford [England] ; New York : Elsevier, 2000  |z 0080436080  |z 9780080436081  |w (DLC) 00028030  |w (OCoLC)43569426 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080436081  |z Texto completo